第一章 变分法的概念
1 泛函和泛函的极值
例1 捷线(最速降线)问题
T = ∫ 0 T d t = ∫ l d s v = ∫ x 0 x 1 1 + y ′ 2 y − α d x . T = \int_0^Tdt = \int_l \frac{ds}{v} = \int_{x_0}^{x_1} \sqrt{\frac{1+y'^2}{y-\alpha}}dx. T=∫0Tdt=∫lvds=∫x0x1y−α1+y′2dx.
例2 等周问题
根据格林公式,曲线
Γ
\Gamma
Γ 围成的面积为
A
=
1
2
∮
Γ
x
d
y
−
y
d
x
=
1
2
∫
t
0
t
1
(
x
y
˙
−
y
x
˙
)
d
t
.
A = \frac{1}{2}\oint_\Gamma xdy-ydx = \frac{1}{2}\int_{t_0}^{t_1}(x\dot{y}-y\dot{x})dt.
A=21∮Γxdy−ydx=21∫t0t1(xy˙−yx˙)dt.
例3 极小曲面问题
D
D
D 是
l
l
l 所围的平面区域,由积分学知识,曲面面积为
S
=
∬
D
1
+
(
∂
z
∂
x
)
2
+
(
∂
z
∂
y
)
2
d
x
d
y
.
\begin{gather*} \\ S= \iint_D \sqrt{1+(\frac{\partial z}{\partial x})^2+(\frac{\partial z}{\partial y})^2}dxdy. \end{gather*}
S=∬D1+(∂x∂z)2+(∂y∂z)2dxdy.
极值必要条件
绝对极值
⇒
\Rightarrow
⇒ 强相对极值
⇒
\Rightarrow
⇒ 弱相对极值
弱相对极值的必要条件
⇒
\Rightarrow
⇒ 强相对极值的必要条件
⇒
\Rightarrow
⇒ 绝对极值的必要条件
2 基本引理(考反证法)
基本引理1
设函数
f
(
x
)
∈
C
[
x
0
,
x
1
]
f(x)\in C[x_0, x_1]
f(x)∈C[x0,x1],以及对任意函数
η
(
x
)
∈
C
[
x
0
,
x
1
]
\eta(x) \in C[x_0, x_1]
η(x)∈C[x0,x1],
η
(
x
0
)
=
η
(
x
1
)
=
0
\eta(x_0)=\eta(x_1)=0
η(x0)=η(x1)=0,都有
∫
x
0
x
1
f
(
x
)
η
(
x
)
d
x
=
0
,
\int_{x_0}^{x_1} f(x)\eta(x)dx=0,
∫x0x1f(x)η(x)dx=0,
则在区间
[
x
0
,
x
1
]
[x_0, x_1]
[x0,x1] 上,
f
(
x
)
≡
0
f(x)\equiv 0
f(x)≡0.
基本引理2
设
D
D
D 为某平面区域,它的边界为
Γ
\Gamma
Γ,函数
f
(
x
,
y
)
∈
C
(
D
)
f(x,y)\in C(D)
f(x,y)∈C(D),以及对任意函数
η
(
x
,
y
)
∈
C
(
D
)
\eta(x,y) \in C(D)
η(x,y)∈C(D),且
η
(
x
,
y
)
∣
Γ
=
0
\eta(x,y)\Big|_{\Gamma}=0
η(x,y)
Γ=0,都有
∬
D
f
(
x
,
y
)
η
(
x
,
y
)
d
x
d
y
=
0
,
\iint_{D} f(x,y)\eta(x,y)dxdy=0,
∬Df(x,y)η(x,y)dxdy=0,
则在区域
D
D
D 上,
f
(
x
)
≡
0
f(x)\equiv 0
f(x)≡0.
第二章 固定边界的变分问题
♠ \spadesuit ♠ 欧拉方程
F y − d d x F y ′ = 0 F_y - \frac{d}{dx}F_{y'}=0 Fy−dxdFy′=0
(一)不显含y
欧拉方程化为
d
d
x
F
y
′
=
0
\frac{d}{dx}F_{y'}=0
dxdFy′=0
它的首次积分为
F
y
′
(
x
,
y
′
)
=
C
F_{y'}(x,y')=C
Fy′(x,y′)=C
(二)不显含x
它的首次积分为
F
(
y
,
y
′
)
−
y
′
F
y
′
(
y
,
y
′
)
=
C
F(y,y')-y'F_{y'}(y,y')=C
F(y,y′)−y′Fy′(y,y′)=C
其中C是积分常数.
最小旋转面问题
旋转曲面面积为
S
[
y
]
=
∫
A
B
^
2
π
y
d
s
=
2
π
∫
x
0
x
1
y
1
+
y
′
2
d
x
S[y]=\int_{\hat{AB}}2\pi yds=2\pi \int_{x_0}^{x_1}y\sqrt{1+y'^2}dx
S[y]=∫AB^2πyds=2π∫x0x1y1+y′2dx
(三)不显含x,y
欧拉方程化为
d
d
x
F
y
′
=
0
\frac{d}{dx}F_{y'}=0
dxdFy′=0
求导后,得
y
′
′
F
y
′
y
′
=
0
y''F_{y'y'}=0
y′′Fy′y′=0
- 若 y ′ ′ = 0 y''=0 y′′=0,得 y = C 1 x + C 2 y=C1x+C2 y=C1x+C2,这是包含C1,C2的直线族。
- 若
F
y
′
y
′
=
0
F_{y'y'}=0
Fy′y′=0,由于
F
F
F是
y
′
y'
y′的已知函数,不妨假定方程
F
y
′
y
′
=
0
F_{y'y'}=0
Fy′y′=0有
n
n
n个实根
y ′ = k i , ( i = 1 , 2 , . . . , n ) y' =k_i,(i=1,2,...,n) y′=ki,(i=1,2,...,n)
积分得
y = k i x + C , ( I = 1 , 2 , . . . , N ) . y=k_ix+C,(I=1,2,...,N). y=kix+C,(I=1,2,...,N).
这是含有一个参数 C C C的直线族,它已包含在上面的可能,综上,该情况的泛函的极值曲线是直线族 y = C 1 x + C 2 y=C1x+C2 y=C1x+C2.
(四)设F=P(x,y)+Q(x,y)y’,即F是y’的线性函数的情形.
欧拉方程化为
∂
P
∂
y
−
∂
Q
∂
x
=
0
\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x}=0
∂y∂P−∂x∂Q=0
由它解出的
y
=
y
(
x
)
y=y(x)
y=y(x)不含有任意常数。也就是说,所给的变分问题一般是无解的。只有满足边界点的问题才存在。
如果有
∂
P
∂
y
−
∂
Q
∂
x
≡
0
,
\frac{\partial P}{\partial y} -\frac{\partial Q}{\partial x} \equiv 0,
∂y∂P−∂x∂Q≡0,
在所讨论的平面单连区域上成立,则表达式
P
(
x
,
y
)
d
x
+
Q
(
x
,
y
)
d
y
P(x,y)dx+Q(x,y)dy
P(x,y)dx+Q(x,y)dy
是某个单只函数u(x,y)的全微分。这时,泛函
J
[
y
]
=
∫
x
0
x
1
(
P
+
Q
y
′
)
d
x
=
∫
(
x
0
,
y
0
)
(
x
1
,
y
1
)
P
d
x
+
Q
d
y
=
∫
(
x
0
,
y
0
)
(
x
1
,
y
1
)
d
u
(
x
,
y
)
=
u
(
x
1
,
y
1
)
−
u
(
x
0
,
y
0
)
=
常数
,
J[y]=\int_{x_0}^{x_1}(P+Qy')dx=\int_{(x_0,y_0)}^{(x_1,y_1)}Pdx+Qdy \\ =\int_{(x_0,y_0)}^{(x_1,y_1)}du(x,y)=u(x_1,y_1)-u(x_0,y_0)=常数,
J[y]=∫x0x1(P+Qy′)dx=∫(x0,y0)(x1,y1)Pdx+Qdy=∫(x0,y0)(x1,y1)du(x,y)=u(x1,y1)−u(x0,y0)=常数,
也就是泛函的值与积分路径无关,故变分问题失去意义。
2 含多个未知函数的变分问题
讨论含两个未知函数
y
(
x
)
,
z
(
x
)
y(x),z(x)
y(x),z(x)的泛函
J
[
y
,
z
]
=
∫
x
0
x
1
F
(
x
,
y
,
y
′
,
z
,
z
′
)
d
x
J[y,z]=\int_{x_0}^{x_1}F(x,y,y',z,z')dx
J[y,z]=∫x0x1F(x,y,y′,z,z′)dx
的极值问题。
♠ \spadesuit ♠ 欧拉方程组
{ F y − d d x F y ′ = 0 , F z − d d x F z ′ = 0. \begin{cases} F_y-\frac{d}{dx}F_{y'}=0, \\ \\ F_z-\frac{d}{dx}F_{z'}=0. \end{cases} ⎩ ⎨ ⎧Fy−dxdFy′=0,Fz−dxdFz′=0.
♣ \clubsuit ♣ 补充概念:微分方程通解
参考视频链接:笨笨的bob:【微分方程】高阶(三阶)不同特征值关系下的微分方程的通解形式
这里举例只到二阶: r 2 + p r + q = 0 r^2 + pr + q=0 r2+pr+q=0
实数解
⋆ \star ⋆ 不同实根 r 1 ≠ r 2 ⇒ y = C 1 e r 1 x + C 2 e r 2 x r_1\ne r_2 \\ \Rightarrow y=C_1e^{r_1x}+C_2e^{r_2x} r1=r2⇒y=C1er1x+C2er2x
⋆ \star ⋆ 相同实根(重根) r 1 = r 2 ⇒ y = ( C 1 + C 2 x ) e r 1 x r_1=r_2 \\ \Rightarrow y=(C_1+C_2x)e^{r_1x} r1=r2⇒y=(C1+C2x)er1x
虚数解
⋆ \star ⋆ 不同虚根(共轭复根) r 1 = α + i β , r 2 = α − i β ⇒ y = e α x ( C 1 cos β x + C 2 sin β x ) r_1=\alpha+i\beta, r_2=\alpha-i\beta \\ \Rightarrow y=e^{\alpha x}(C_1\cos\beta x+C_2\sin\beta x) r1=α+iβ,r2=α−iβ⇒y=eαx(C1cosβx+C2sinβx)
⋆ \star ⋆ 相同虚根 r 1 = r 2 = α + i β ⇒ y = e α x ( ( C 1 + C 2 x ) cos β x + ( C 3 + C 4 x ) sin β x ) r_1=r_2=\alpha+i\beta \\ \Rightarrow y=e^{\alpha x}((C_1+C_2x)\cos\beta x+(C_3+C_4x)\sin\beta x) r1=r2=α+iβ⇒y=eαx((C1+C2x)cosβx+(C3+C4x)sinβx)
3 含高阶导数的变分
讨论含未知函数
y
(
x
)
y(x)
y(x)的二阶导数的泛函
J
[
y
,
z
]
=
∫
x
0
x
1
F
(
x
,
y
,
y
′
,
y
′
′
)
d
x
J[y,z]=\int_{x_0}^{x_1}F(x,y,y',y'')dx
J[y,z]=∫x0x1F(x,y,y′,y′′)dx
的极值问题。
♠ \spadesuit ♠ 欧拉-泊松(Euler-Poisson)方程
F y − d d x F y ′ + d 2 d x 2 F y ′ ′ = 0 F_y-\frac{d}{dx}F_{y'}+\frac{d^2}{dx^2}F_{y''}=0 Fy−dxdFy′+dx2d2Fy′′=0
依赖两个未知函数
y
(
x
)
,
z
(
x
)
y(x),z(x)
y(x),z(x)的较高阶导数的泛函
J
[
y
,
z
]
=
∫
x
0
x
1
F
(
x
,
y
,
y
′
,
y
′
′
,
⋅
⋅
⋅
y
(
n
)
;
z
,
z
′
,
z
′
′
,
⋅
⋅
⋅
,
z
(
m
)
)
d
x
J[y,z]=\int_{x_0}^{x_1}F(x,y,y',y'',···y^{(n)};z,z',z'', ···, z^{(m)})dx
J[y,z]=∫x0x1F(x,y,y′,y′′,⋅⋅⋅y(n);z,z′,z′′,⋅⋅⋅,z(m))dx
其欧拉-泊松方程为
{
F
y
−
d
d
x
F
y
′
+
d
2
d
x
2
F
y
′
′
−
⋅
⋅
⋅
+
(
−
1
)
n
d
n
d
x
n
F
y
(
n
)
=
0
F
z
−
d
d
x
F
z
′
+
d
2
d
x
2
F
z
′
′
−
⋅
⋅
⋅
+
(
−
1
)
n
d
m
d
x
n
F
z
(
m
)
=
0
\begin{cases} F_y-\frac{d}{dx}F_{y'}+\frac{d^2}{dx^2}F_{y''}-···+(-1)^n\frac{d^n}{dx^n}F_{y(n)}=0 \\ \\ F_z-\frac{d}{dx}F_{z'}+\frac{d^2}{dx^2}F_{z''}-···+(-1)^n\frac{d^m}{dx^n}F_{z(m)}=0 \end{cases}
⎩
⎨
⎧Fy−dxdFy′+dx2d2Fy′′−⋅⋅⋅+(−1)ndxndnFy(n)=0Fz−dxdFz′+dx2d2Fz′′−⋅⋅⋅+(−1)ndxndmFz(m)=0
4 参数形式的变分问题
其欧拉方程组为
{
G
x
−
d
d
t
G
x
˙
=
0
,
G
y
−
d
d
t
G
y
˙
=
0.
\begin{cases} G_x-\frac{d}{dt}G_{\dot{x}}=0, \\ \\ G_y-\frac{d}{dt}G_{\dot{y}}=0. \end{cases}
⎩
⎨
⎧Gx−dtdGx˙=0,Gy−dtdGy˙=0.
5 泛函的变分
提示:下式的积分后半部分用分布积分
一阶变分
δ J = ∫ x 0 x 1 ( F y η + F y ′ η ′ ) d x = ∫ x 0 x 1 ( F y δ y + F y ′ δ y ′ ) d x = [ F y ′ δ y ] x 0 x 1 + ∫ x 0 x 1 ( F y − d d x F y ′ ) δ y d x \delta J=\int_{x_0}^{x_1}(F_y\eta+F_{y'}\eta')dx \\ = \int_{x_0}^{x_1}(F_y\delta y+F_{y'}\delta y')dx \\ =[F_{y'}\delta y]_{x_0}^{x_1}+\int_{x_0}^{x_1}(F_y-\frac{d}{dx}F_{y'})\delta y dx δJ=∫x0x1(Fyη+Fy′η′)dx=∫x0x1(Fyδy+Fy′δy′)dx=[Fy′δy]x0x1+∫x0x1(Fy−dxdFy′)δydx
二阶变分
δ J = ∫ x 0 x 1 ( F y y δ y 2 + 2 F y y ′ δ y δ y ′ + F y ′ y δ y ′ 2 ) d x \delta J = \int_{x_0}^{x_1}(F_{yy}\delta y^2+2F_{yy'}\delta y\delta y'+F_{y'y}\delta y'^2)dx δJ=∫x0x1(Fyyδy2+2Fyy′δyδy′+Fy′yδy′2)dx
第三章 变动边界的变分问题
1 变动端点变分问题的自然边界条件
一阶未知函数的一阶变分(区分左右端点)
F
y
′
∣
x
=
x
0
或
x
=
x
1
=
0
F_{y'}\Big|_{x=x_0 或 x=x_1}=0
Fy′
x=x0或x=x1=0
包含高阶未知函数的一阶变分,两个自然边界条件
[
F
y
′
−
d
d
x
F
y
′
′
]
∣
x
=
x
0
或
x
=
x
1
=
0
,
F
y
′
′
∣
x
=
x
0
或
x
=
x
1
=
0
[F_{y'}-\frac{d}{dx}F_{y''}]\Big|_{x=x_0 或 x=x_1}=0, \\ F_{y''}\Big|_{x=x_0 或 x=x_1}=0
[Fy′−dxdFy′′]
x=x0或x=x1=0,Fy′′
x=x0或x=x1=0
2 变动端点变分问题的横截条件
泛函的极值曲线是
y
=
y
(
x
)
y=y(x)
y=y(x) ,变动端点沿着光滑曲线
Γ
:
y
=
b
(
x
)
\Gamma: y=b(x)
Γ:y=b(x) 自由移动,特别地,若泛函的被积函数具有形式
F
=
P
(
x
,
y
)
1
+
y
′
2
(
P
(
x
,
y
)
=
0
)
.
F=P(x,y)\sqrt{1+y'^2} (P(x,y)=0).
F=P(x,y)1+y′2(P(x,y)=0).
则有横截条件
b
′
(
x
1
)
y
′
(
x
1
)
=
−
1
a
′
(
x
0
)
y
′
(
x
0
)
=
−
1
b'(x_1)y'(x_1)=-1 \\ a'(x_0)y'(x_0)=-1
b′(x1)y′(x1)=−1a′(x0)y′(x0)=−1
这就是说,极值曲线与变动端已知曲线
y
=
b
(
x
)
,
y
=
a
(
x
)
y=b(x),y=a(x)
y=b(x),y=a(x),分别在
x
=
x
1
,
x
=
x
0
x=x_1,x=x_0
x=x1,x=x0 处正交,此横截条件也属于自然边界条件。
第四章 重积分的变分问题
1 固定边界问题
♠ \spadesuit ♠ 奥斯特洛格拉得斯基方程
F
u
−
∂
∂
x
F
u
x
−
F
u
y
=
0.
F_u-\frac{\partial}{\partial x}F_{u_x}-F_{u_y}=0.
Fu−∂x∂Fux−Fuy=0.
u
(
x
,
y
)
u(x,y)
u(x,y)使得泛函取得极值函数的边界条件。
2 变动边界问题与自动边界条件
F
u
x
d
y
d
s
−
F
u
y
d
x
d
s
=
0
,
F_{u_x}\frac{dy}{ds}-F_{u_y}\frac{dx}{ds}=0,
Fuxdsdy−Fuydsdx=0,
其中
s
s
s 是
D
D
D 的边界曲线l的弧长变量,它称为泛函的极值函数在
l
l
l 上的自然边界条件。
第五章 泛函的条件极值问题
1 短程线问题
♠ \spadesuit ♠ 定理1 (拉格朗日定理)
设函数
y
(
x
)
,
z
(
x
)
y(x),z(x)
y(x),z(x)在曲面
G
(
x
,
y
,
z
)
=
0
G(x,y,z)=0
G(x,y,z)=0上,使得泛函取极值,并且沿着曲线
Γ
:
y
=
y
(
x
)
,
z
=
z
(
x
)
\Gamma: y=y(x),z=z(x)
Γ:y=y(x),z=z(x),偏导数
G
y
G_y
Gy或
G
z
G_z
Gz中至少有一个不为零,则必有函数因子
λ
(
x
)
\lambda(x)
λ(x)存在,使得
y
(
x
)
,
z
(
x
)
y(x),z(x)
y(x),z(x)满足泛函
I
[
y
,
z
]
=
∫
x
0
x
1
[
F
(
x
,
y
,
z
,
y
′
,
z
′
)
+
λ
(
x
)
G
(
x
,
y
,
z
)
]
d
x
≜
∫
x
0
x
1
[
H
(
x
,
y
,
z
,
y
′
,
z
′
,
λ
(
x
)
)
]
d
x
I[y,z]=\int_{x_0}^{x_1}[F(x,y,z,y',z')+\lambda(x)G(x,y,z)]dx \\ \triangleq \int_{x_0}^{x_1}[H(x,y,z,y',z',\lambda(x))]dx
I[y,z]=∫x0x1[F(x,y,z,y′,z′)+λ(x)G(x,y,z)]dx≜∫x0x1[H(x,y,z,y′,z′,λ(x))]dx
的欧拉方程组
{
H
y
−
d
d
x
H
y
′
=
0
,
H
z
−
d
d
x
H
z
′
=
0
,
\begin{cases} H_y-\frac{d}{dx}H_{y'}=0, \\ H_z-\frac{d}{dx}H_{z'}=0, \end{cases} \\
{Hy−dxdHy′=0,Hz−dxdHz′=0,
其中
H
=
F
+
λ
(
x
)
G
(
x
,
y
,
z
)
.
H=F+\lambda(x)G(x,y,z).
H=F+λ(x)G(x,y,z).
2 等周问题
♠ \spadesuit ♠ 定理2 (欧拉定理)
设函数
y
=
y
(
x
)
y=y(x)
y=y(x)在满足等周条件
K
=
∫
x
0
x
1
G
(
x
,
y
,
z
)
d
x
=
l
(
常数
)
K=\int_{x_0}^{x_1}G(x,y,z)dx=l(常数)
K=∫x0x1G(x,y,z)dx=l(常数)及边界条件
y
(
x
0
)
=
y
0
,
y
(
x
1
)
=
y
1
y(x_0)=y_0,y(x_1)=y_1
y(x0)=y0,y(x1)=y1上,使得泛函取极值( 但
y
=
f
(
x
)
y=f(x)
y=f(x)不是泛函K的极值曲线),则必有函数因子
λ
(
x
)
\lambda(x)
λ(x)存在,使得
y
(
x
)
y(x)
y(x)是泛函
I
=
∫
x
0
x
1
[
F
(
x
,
y
,
z
,
y
′
)
+
λ
(
x
)
G
(
x
,
y
)
]
d
x
≜
∫
x
0
x
1
[
H
(
x
,
y
,
y
′
,
λ
(
x
)
)
]
d
x
I=\int_{x_0}^{x_1}[F(x,y,z,y')+\lambda(x)G(x,y)]dx \\ \triangleq \int_{x_0}^{x_1}[H(x,y,y',\lambda(x))]dx
I=∫x0x1[F(x,y,z,y′)+λ(x)G(x,y)]dx≜∫x0x1[H(x,y,y′,λ(x))]dx
的极值曲线,即
y
=
y
(
x
)
y=y(x)
y=y(x) 满足欧拉方程
H
y
−
d
d
x
H
y
′
=
0
,
H_y-\frac{d}{dx}H_{y'}=0,
Hy−dxdHy′=0,
其中
H
=
F
+
λ
(
x
)
G
(
x
,
y
)
.
H=F+\lambda(x)G(x,y).
H=F+λ(x)G(x,y).
常用不定积分公式
∫ a x d x = a x ln ( x ) + C ∫ sec 2 x d x = tan x + C ∫ csc 2 d x = − cot x + C ∫ sec x tan x d x = sec x + C ∫ d x 1 − x 2 = arcsin x + C = − arccos x + C ∫ d x 1 + x 2 = arctan x + C = − arccot x + C ∫ tan x d x = − ln ∣ cos x ∣ + C ∫ cot x d x = ln ∣ sin x ∣ + C ∫ d x a 2 − x 2 d x = 1 2 a ln ∣ a + x a − x ∣ + C ∫ d x a 2 + x 2 d x = 1 a arctan x a + C ∫ d x a 2 − x 2 d x = arcsin x a + C ∫ d x a 2 + x 2 d x = ln ∣ x + x 2 + a 2 ∣ + C ∫ sh x d x = ch x + C , ch x = e x + e − x 2 ∫ ch x d x = sh x + C , sh x = e x − e − x 2 ∫ x 2 + a 2 d x = x 2 x 2 + a 2 + a 2 2 ln ( x + x 2 + a 2 ) + C \int a^x dx =\frac{a^x}{\ln(x)}+C \\[10pt] \int \sec ^2xdx=\tan x+C \\[10pt] \int \csc ^2dx = -\cot x+C \\[10pt] \int \sec x\tan xdx=\sec x +C \\[10pt] \int \frac{dx}{\sqrt{1-x^2}}=\arcsin x+C=-\arccos x+C \\[10pt] \int \frac{dx}{1+x^2}=\arctan x+C=-\text{arccot} x+C \\[10pt] \int \tan xdx = -\ln\left|\cos x\right|+C \\[10pt] \int \cot xdx = \ln\left|\sin x\right|+C \\[10pt] \int \frac{dx}{a^2-x^2}dx=\frac{1}{2a}\ln \left| \frac{a+x}{a-x} \right|+C \\[10pt] \int \frac{dx}{a^2+x^2}dx=\frac{1}{a} \arctan \frac{x}{a} +C \\[10pt] \int \frac{dx}{\sqrt{a^2-x^2}}dx=\arcsin \frac{x}{a} +C \\[10pt] \int \frac{dx}{\sqrt{a^2+x^2}}dx=\ln \left| x+\sqrt{x^2+a^2} \right| +C \\[10pt] \int \sh xdx = \ch x+C,\ch x=\frac{e^x+e^{-x}}{2} \\[10pt] \int \ch xdx = \sh x+C,\sh x=\frac{e^x-e^{-x}}{2} \\[10pt] \int \sqrt{x^2+a^2}dx=\frac{x}{2}\sqrt{x^2+a^2}+\frac{a^2}{2}\ln(x+\sqrt{x^2+a^2})+C ∫axdx=ln(x)ax+C∫sec2xdx=tanx+C∫csc2dx=−cotx+C∫secxtanxdx=secx+C∫1−x2dx=arcsinx+C=−arccosx+C∫1+x2dx=arctanx+C=−arccotx+C∫tanxdx=−ln∣cosx∣+C∫cotxdx=ln∣sinx∣+C∫a2−x2dxdx=2a1ln a−xa+x +C∫a2+x2dxdx=a1arctanax+C∫a2−x2dxdx=arcsinax+C∫a2+x2dxdx=ln x+x2+a2 +C∫shxdx=chx+C,chx=2ex+e−x∫chxdx=shx+C,shx=2ex−e−x∫x2+a2dx=2xx2+a2+2a2ln(x+x2+a2)+C