《变分法·吴迪光1987年》复习汇总

第一章 变分法的概念

1 泛函和泛函的极值

例1 捷线(最速降线)问题

T = ∫ 0 T d t = ∫ l d s v = ∫ x 0 x 1 1 + y ′ 2 y − α d x . T = \int_0^Tdt = \int_l \frac{ds}{v} = \int_{x_0}^{x_1} \sqrt{\frac{1+y'^2}{y-\alpha}}dx. T=0Tdt=lvds=x0x1yα1+y′2 dx.

例2 等周问题

根据格林公式,曲线 Γ \Gamma Γ 围成的面积为
A = 1 2 ∮ Γ x d y − y d x = 1 2 ∫ t 0 t 1 ( x y ˙ − y x ˙ ) d t . A = \frac{1}{2}\oint_\Gamma xdy-ydx = \frac{1}{2}\int_{t_0}^{t_1}(x\dot{y}-y\dot{x})dt. A=21Γxdyydx=21t0t1(xy˙yx˙)dt.

例3 极小曲面问题

D D D l l l 所围的平面区域,由积分学知识,曲面面积为
S = ∬ D 1 + ( ∂ z ∂ x ) 2 + ( ∂ z ∂ y ) 2 d x d y . \begin{gather*} \\ S= \iint_D \sqrt{1+(\frac{\partial z}{\partial x})^2+(\frac{\partial z}{\partial y})^2}dxdy. \end{gather*} S=D1+(xz)2+(yz)2 dxdy.

极值必要条件

绝对极值 ⇒ \Rightarrow 强相对极值 ⇒ \Rightarrow 弱相对极值
弱相对极值的必要条件 ⇒ \Rightarrow 强相对极值的必要条件 ⇒ \Rightarrow 绝对极值的必要条件

2 基本引理(考反证法)

基本引理1

设函数 f ( x ) ∈ C [ x 0 , x 1 ] f(x)\in C[x_0, x_1] f(x)C[x0,x1],以及对任意函数 η ( x ) ∈ C [ x 0 , x 1 ] \eta(x) \in C[x_0, x_1] η(x)C[x0,x1] η ( x 0 ) = η ( x 1 ) = 0 \eta(x_0)=\eta(x_1)=0 η(x0)=η(x1)=0,都有
∫ x 0 x 1 f ( x ) η ( x ) d x = 0 , \int_{x_0}^{x_1} f(x)\eta(x)dx=0, x0x1f(x)η(x)dx=0,
则在区间 [ x 0 , x 1 ] [x_0, x_1] [x0,x1] 上, f ( x ) ≡ 0 f(x)\equiv 0 f(x)0.

基本引理2

D D D 为某平面区域,它的边界为 Γ \Gamma Γ,函数 f ( x , y ) ∈ C ( D ) f(x,y)\in C(D) f(x,y)C(D),以及对任意函数 η ( x , y ) ∈ C ( D ) \eta(x,y) \in C(D) η(x,y)C(D),且 η ( x , y ) ∣ Γ = 0 \eta(x,y)\Big|_{\Gamma}=0 η(x,y) Γ=0,都有
∬ D f ( x , y ) η ( x , y ) d x d y = 0 , \iint_{D} f(x,y)\eta(x,y)dxdy=0, Df(x,y)η(x,y)dxdy=0,
则在区域 D D D 上, f ( x ) ≡ 0 f(x)\equiv 0 f(x)0.

第二章 固定边界的变分问题

♠ \spadesuit 欧拉方程

F y − d d x F y ′ = 0 F_y - \frac{d}{dx}F_{y'}=0 FydxdFy=0

(一)不显含y

欧拉方程化为
d d x F y ′ = 0 \frac{d}{dx}F_{y'}=0 dxdFy=0
它的首次积分为
F y ′ ( x , y ′ ) = C F_{y'}(x,y')=C Fy(x,y)=C

(二)不显含x

它的首次积分为
F ( y , y ′ ) − y ′ F y ′ ( y , y ′ ) = C F(y,y')-y'F_{y'}(y,y')=C F(y,y)yFy(y,y)=C
其中C是积分常数.

最小旋转面问题

旋转曲面面积为
S [ y ] = ∫ A B ^ 2 π y d s = 2 π ∫ x 0 x 1 y 1 + y ′ 2 d x S[y]=\int_{\hat{AB}}2\pi yds=2\pi \int_{x_0}^{x_1}y\sqrt{1+y'^2}dx S[y]=AB^2πyds=2πx0x1y1+y′2 dx

(三)不显含x,y

欧拉方程化为
d d x F y ′ = 0 \frac{d}{dx}F_{y'}=0 dxdFy=0
求导后,得
y ′ ′ F y ′ y ′ = 0 y''F_{y'y'}=0 y′′Fyy=0

  1. y ′ ′ = 0 y''=0 y′′=0,得 y = C 1 x + C 2 y=C1x+C2 y=C1x+C2,这是包含C1,C2的直线族。
  2. F y ′ y ′ = 0 F_{y'y'}=0 Fyy=0,由于 F F F y ′ y' y的已知函数,不妨假定方程 F y ′ y ′ = 0 F_{y'y'}=0 Fyy=0 n n n个实根
    y ′ = k i , ( i = 1 , 2 , . . . , n ) y' =k_i,(i=1,2,...,n) y=ki,(i=1,2,...,n)
    积分得
    y = k i x + C , ( I = 1 , 2 , . . . , N ) . y=k_ix+C,(I=1,2,...,N). y=kix+C,(I=1,2,...,N).
    这是含有一个参数 C C C的直线族,它已包含在上面的可能,综上,该情况的泛函的极值曲线是直线族 y = C 1 x + C 2 y=C1x+C2 y=C1x+C2.

(四)设F=P(x,y)+Q(x,y)y’,即F是y’的线性函数的情形.

欧拉方程化为
∂ P ∂ y − ∂ Q ∂ x = 0 \frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x}=0 yPxQ=0
由它解出的 y = y ( x ) y=y(x) y=y(x)不含有任意常数。也就是说,所给的变分问题一般是无解的。只有满足边界点的问题才存在。
如果有
∂ P ∂ y − ∂ Q ∂ x ≡ 0 , \frac{\partial P}{\partial y} -\frac{\partial Q}{\partial x} \equiv 0, yPxQ0,

在所讨论的平面单连区域上成立,则表达式
P ( x , y ) d x + Q ( x , y ) d y P(x,y)dx+Q(x,y)dy P(x,y)dx+Q(x,y)dy
是某个单只函数u(x,y)的全微分。这时,泛函
J [ y ] = ∫ x 0 x 1 ( P + Q y ′ ) d x = ∫ ( x 0 , y 0 ) ( x 1 , y 1 ) P d x + Q d y = ∫ ( x 0 , y 0 ) ( x 1 , y 1 ) d u ( x , y ) = u ( x 1 , y 1 ) − u ( x 0 , y 0 ) = 常数 , J[y]=\int_{x_0}^{x_1}(P+Qy')dx=\int_{(x_0,y_0)}^{(x_1,y_1)}Pdx+Qdy \\ =\int_{(x_0,y_0)}^{(x_1,y_1)}du(x,y)=u(x_1,y_1)-u(x_0,y_0)=常数, J[y]=x0x1(P+Qy)dx=(x0,y0)(x1,y1)Pdx+Qdy=(x0,y0)(x1,y1)du(x,y)=u(x1,y1)u(x0,y0)=常数,
也就是泛函的值与积分路径无关,故变分问题失去意义。

2 含多个未知函数的变分问题

讨论含两个未知函数 y ( x ) , z ( x ) y(x),z(x) y(x),z(x)的泛函
J [ y , z ] = ∫ x 0 x 1 F ( x , y , y ′ , z , z ′ ) d x J[y,z]=\int_{x_0}^{x_1}F(x,y,y',z,z')dx J[y,z]=x0x1F(x,y,y,z,z)dx
的极值问题。

♠ \spadesuit 欧拉方程组

{ F y − d d x F y ′ = 0 , F z − d d x F z ′ = 0. \begin{cases} F_y-\frac{d}{dx}F_{y'}=0, \\ \\ F_z-\frac{d}{dx}F_{z'}=0. \end{cases} FydxdFy=0,FzdxdFz=0.

♣ \clubsuit 补充概念:微分方程通解

参考视频链接:笨笨的bob:【微分方程】高阶(三阶)不同特征值关系下的微分方程的通解形式

这里举例只到二阶: r 2 + p r + q = 0 r^2 + pr + q=0 r2+pr+q=0

实数解

⋆ \star 不同实根 r 1 ≠ r 2 ⇒ y = C 1 e r 1 x + C 2 e r 2 x r_1\ne r_2 \\ \Rightarrow y=C_1e^{r_1x}+C_2e^{r_2x} r1=r2y=C1er1x+C2er2x

⋆ \star 相同实根(重根) r 1 = r 2 ⇒ y = ( C 1 + C 2 x ) e r 1 x r_1=r_2 \\ \Rightarrow y=(C_1+C_2x)e^{r_1x} r1=r2y=(C1+C2x)er1x

虚数解

⋆ \star 不同虚根(共轭复根) r 1 = α + i β , r 2 = α − i β ⇒ y = e α x ( C 1 cos ⁡ β x + C 2 sin ⁡ β x ) r_1=\alpha+i\beta, r_2=\alpha-i\beta \\ \Rightarrow y=e^{\alpha x}(C_1\cos\beta x+C_2\sin\beta x) r1=α+iβ,r2=αiβy=eαx(C1cosβx+C2sinβx)

⋆ \star 相同虚根 r 1 = r 2 = α + i β ⇒ y = e α x ( ( C 1 + C 2 x ) cos ⁡ β x + ( C 3 + C 4 x ) sin ⁡ β x ) r_1=r_2=\alpha+i\beta \\ \Rightarrow y=e^{\alpha x}((C_1+C_2x)\cos\beta x+(C_3+C_4x)\sin\beta x) r1=r2=α+iβy=eαx((C1+C2x)cosβx+(C3+C4x)sinβx)

3 含高阶导数的变分

讨论含未知函数 y ( x ) y(x) y(x)的二阶导数的泛函
J [ y , z ] = ∫ x 0 x 1 F ( x , y , y ′ , y ′ ′ ) d x J[y,z]=\int_{x_0}^{x_1}F(x,y,y',y'')dx J[y,z]=x0x1F(x,y,y,y′′)dx
的极值问题。

♠ \spadesuit 欧拉-泊松(Euler-Poisson)方程

F y − d d x F y ′ + d 2 d x 2 F y ′ ′ = 0 F_y-\frac{d}{dx}F_{y'}+\frac{d^2}{dx^2}F_{y''}=0 FydxdFy+dx2d2Fy′′=0

依赖两个未知函数 y ( x ) , z ( x ) y(x),z(x) y(x),z(x)的较高阶导数的泛函
J [ y , z ] = ∫ x 0 x 1 F ( x , y , y ′ , y ′ ′ , ⋅ ⋅ ⋅ y ( n ) ; z , z ′ , z ′ ′ , ⋅ ⋅ ⋅ , z ( m ) ) d x J[y,z]=\int_{x_0}^{x_1}F(x,y,y',y'',···y^{(n)};z,z',z'', ···, z^{(m)})dx J[y,z]=x0x1F(x,y,y,y′′,⋅⋅⋅y(n);zzz′′,⋅⋅⋅,z(m))dx
其欧拉-泊松方程为
{ F y − d d x F y ′ + d 2 d x 2 F y ′ ′ − ⋅ ⋅ ⋅ + ( − 1 ) n d n d x n F y ( n ) = 0 F z − d d x F z ′ + d 2 d x 2 F z ′ ′ − ⋅ ⋅ ⋅ + ( − 1 ) n d m d x n F z ( m ) = 0 \begin{cases} F_y-\frac{d}{dx}F_{y'}+\frac{d^2}{dx^2}F_{y''}-···+(-1)^n\frac{d^n}{dx^n}F_{y(n)}=0 \\ \\ F_z-\frac{d}{dx}F_{z'}+\frac{d^2}{dx^2}F_{z''}-···+(-1)^n\frac{d^m}{dx^n}F_{z(m)}=0 \end{cases} FydxdFy+dx2d2Fy′′⋅⋅⋅+(1)ndxndnFy(n)=0FzdxdFz+dx2d2Fz′′⋅⋅⋅+(1)ndxndmFz(m)=0

4 参数形式的变分问题

其欧拉方程组为
{ G x − d d t G x ˙ = 0 , G y − d d t G y ˙ = 0. \begin{cases} G_x-\frac{d}{dt}G_{\dot{x}}=0, \\ \\ G_y-\frac{d}{dt}G_{\dot{y}}=0. \end{cases} GxdtdGx˙=0,GydtdGy˙=0.

5 泛函的变分

提示:下式的积分后半部分用分布积分

一阶变分

δ J = ∫ x 0 x 1 ( F y η + F y ′ η ′ ) d x = ∫ x 0 x 1 ( F y δ y + F y ′ δ y ′ ) d x = [ F y ′ δ y ] x 0 x 1 + ∫ x 0 x 1 ( F y − d d x F y ′ ) δ y d x \delta J=\int_{x_0}^{x_1}(F_y\eta+F_{y'}\eta')dx \\ = \int_{x_0}^{x_1}(F_y\delta y+F_{y'}\delta y')dx \\ =[F_{y'}\delta y]_{x_0}^{x_1}+\int_{x_0}^{x_1}(F_y-\frac{d}{dx}F_{y'})\delta y dx δJ=x0x1(Fyη+Fyη)dx=x0x1(Fyδy+Fyδy)dx=[Fyδy]x0x1+x0x1(FydxdFy)δydx

二阶变分

δ J = ∫ x 0 x 1 ( F y y δ y 2 + 2 F y y ′ δ y δ y ′ + F y ′ y δ y ′ 2 ) d x \delta J = \int_{x_0}^{x_1}(F_{yy}\delta y^2+2F_{yy'}\delta y\delta y'+F_{y'y}\delta y'^2)dx δJ=x0x1(Fyyδy2+2Fyyδyδy+Fyyδy′2)dx

第三章 变动边界的变分问题

1 变动端点变分问题的自然边界条件

一阶未知函数的一阶变分(区分左右端点)
F y ′ ∣ x = x 0 或 x = x 1 = 0 F_{y'}\Big|_{x=x_0 或 x=x_1}=0 Fy x=x0x=x1=0
包含高阶未知函数的一阶变分,两个自然边界条件
[ F y ′ − d d x F y ′ ′ ] ∣ x = x 0 或 x = x 1 = 0 , F y ′ ′ ∣ x = x 0 或 x = x 1 = 0 [F_{y'}-\frac{d}{dx}F_{y''}]\Big|_{x=x_0 或 x=x_1}=0, \\ F_{y''}\Big|_{x=x_0 或 x=x_1}=0 [FydxdFy′′] x=x0x=x1=0Fy′′ x=x0x=x1=0

2 变动端点变分问题的横截条件

泛函的极值曲线是 y = y ( x ) y=y(x) y=y(x) ,变动端点沿着光滑曲线 Γ : y = b ( x ) \Gamma: y=b(x) Γ:y=b(x) 自由移动,特别地,若泛函的被积函数具有形式
F = P ( x , y ) 1 + y ′ 2 ( P ( x , y ) = 0 ) . F=P(x,y)\sqrt{1+y'^2} (P(x,y)=0). F=P(x,y)1+y′2 (P(x,y)=0).
则有横截条件
b ′ ( x 1 ) y ′ ( x 1 ) = − 1 a ′ ( x 0 ) y ′ ( x 0 ) = − 1 b'(x_1)y'(x_1)=-1 \\ a'(x_0)y'(x_0)=-1 b(x1)y(x1)=1a(x0)y(x0)=1
这就是说,极值曲线与变动端已知曲线 y = b ( x ) , y = a ( x ) y=b(x),y=a(x) y=b(x),y=a(x),分别在 x = x 1 , x = x 0 x=x_1,x=x_0 x=x1,x=x0 处正交,此横截条件也属于自然边界条件。

第四章 重积分的变分问题

1 固定边界问题

♠ \spadesuit 奥斯特洛格拉得斯基方程

F u − ∂ ∂ x F u x − F u y = 0. F_u-\frac{\partial}{\partial x}F_{u_x}-F_{u_y}=0. FuxFuxFuy=0.
u ( x , y ) u(x,y) u(x,y)使得泛函取得极值函数的边界条件。

2 变动边界问题与自动边界条件

F u x d y d s − F u y d x d s = 0 , F_{u_x}\frac{dy}{ds}-F_{u_y}\frac{dx}{ds}=0, FuxdsdyFuydsdx=0,
其中 s s s D D D 的边界曲线l的弧长变量,它称为泛函的极值函数在 l l l 上的自然边界条件。

第五章 泛函的条件极值问题

1 短程线问题

♠ \spadesuit 定理1 (拉格朗日定理)

设函数 y ( x ) , z ( x ) y(x),z(x) y(x),z(x)在曲面 G ( x , y , z ) = 0 G(x,y,z)=0 G(x,y,z)=0上,使得泛函取极值,并且沿着曲线 Γ : y = y ( x ) , z = z ( x ) \Gamma: y=y(x),z=z(x) Γ:y=y(x),z=z(x),偏导数 G y G_y Gy G z G_z Gz中至少有一个不为零,则必有函数因子 λ ( x ) \lambda(x) λ(x)存在,使得 y ( x ) , z ( x ) y(x),z(x) y(x),z(x)满足泛函
I [ y , z ] = ∫ x 0 x 1 [ F ( x , y , z , y ′ , z ′ ) + λ ( x ) G ( x , y , z ) ] d x ≜ ∫ x 0 x 1 [ H ( x , y , z , y ′ , z ′ , λ ( x ) ) ] d x I[y,z]=\int_{x_0}^{x_1}[F(x,y,z,y',z')+\lambda(x)G(x,y,z)]dx \\ \triangleq \int_{x_0}^{x_1}[H(x,y,z,y',z',\lambda(x))]dx I[y,z]=x0x1[F(x,y,z,y,z)+λ(x)G(x,y,z)]dxx0x1[H(x,y,z,y,z,λ(x))]dx
的欧拉方程组
{ H y − d d x H y ′ = 0 , H z − d d x H z ′ = 0 , \begin{cases} H_y-\frac{d}{dx}H_{y'}=0, \\ H_z-\frac{d}{dx}H_{z'}=0, \end{cases} \\ {HydxdHy=0,HzdxdHz=0,
其中 H = F + λ ( x ) G ( x , y , z ) . H=F+\lambda(x)G(x,y,z). H=F+λ(x)G(x,y,z).

2 等周问题

♠ \spadesuit 定理2 (欧拉定理)

设函数 y = y ( x ) y=y(x) y=y(x)在满足等周条件 K = ∫ x 0 x 1 G ( x , y , z ) d x = l ( 常数 ) K=\int_{x_0}^{x_1}G(x,y,z)dx=l(常数) K=x0x1G(x,y,z)dx=l(常数)及边界条件 y ( x 0 ) = y 0 , y ( x 1 ) = y 1 y(x_0)=y_0,y(x_1)=y_1 y(x0)=y0,y(x1)=y1上,使得泛函取极值( 但 y = f ( x ) y=f(x) y=f(x)不是泛函K的极值曲线),则必有函数因子 λ ( x ) \lambda(x) λ(x)存在,使得 y ( x ) y(x) y(x)是泛函
I = ∫ x 0 x 1 [ F ( x , y , z , y ′ ) + λ ( x ) G ( x , y ) ] d x ≜ ∫ x 0 x 1 [ H ( x , y , y ′ , λ ( x ) ) ] d x I=\int_{x_0}^{x_1}[F(x,y,z,y')+\lambda(x)G(x,y)]dx \\ \triangleq \int_{x_0}^{x_1}[H(x,y,y',\lambda(x))]dx I=x0x1[F(x,y,z,y)+λ(x)G(x,y)]dxx0x1[H(x,y,y,λ(x))]dx
的极值曲线,即 y = y ( x ) y=y(x) y=y(x) 满足欧拉方程
H y − d d x H y ′ = 0 , H_y-\frac{d}{dx}H_{y'}=0, HydxdHy=0,
其中 H = F + λ ( x ) G ( x , y ) . H=F+\lambda(x)G(x,y). H=F+λ(x)G(x,y).

常用不定积分公式

∫ a x d x = a x ln ⁡ ( x ) + C ∫ sec ⁡ 2 x d x = tan ⁡ x + C ∫ csc ⁡ 2 d x = − cot ⁡ x + C ∫ sec ⁡ x tan ⁡ x d x = sec ⁡ x + C ∫ d x 1 − x 2 = arcsin ⁡ x + C = − arccos ⁡ x + C ∫ d x 1 + x 2 = arctan ⁡ x + C = − arccot x + C ∫ tan ⁡ x d x = − ln ⁡ ∣ cos ⁡ x ∣ + C ∫ cot ⁡ x d x = ln ⁡ ∣ sin ⁡ x ∣ + C ∫ d x a 2 − x 2 d x = 1 2 a ln ⁡ ∣ a + x a − x ∣ + C ∫ d x a 2 + x 2 d x = 1 a arctan ⁡ x a + C ∫ d x a 2 − x 2 d x = arcsin ⁡ x a + C ∫ d x a 2 + x 2 d x = ln ⁡ ∣ x + x 2 + a 2 ∣ + C ∫ sh ⁡ x d x = ch ⁡ x + C , ch ⁡ x = e x + e − x 2 ∫ ch ⁡ x d x = sh ⁡ x + C , sh ⁡ x = e x − e − x 2 ∫ x 2 + a 2 d x = x 2 x 2 + a 2 + a 2 2 ln ⁡ ( x + x 2 + a 2 ) + C \int a^x dx =\frac{a^x}{\ln(x)}+C \\[10pt] \int \sec ^2xdx=\tan x+C \\[10pt] \int \csc ^2dx = -\cot x+C \\[10pt] \int \sec x\tan xdx=\sec x +C \\[10pt] \int \frac{dx}{\sqrt{1-x^2}}=\arcsin x+C=-\arccos x+C \\[10pt] \int \frac{dx}{1+x^2}=\arctan x+C=-\text{arccot} x+C \\[10pt] \int \tan xdx = -\ln\left|\cos x\right|+C \\[10pt] \int \cot xdx = \ln\left|\sin x\right|+C \\[10pt] \int \frac{dx}{a^2-x^2}dx=\frac{1}{2a}\ln \left| \frac{a+x}{a-x} \right|+C \\[10pt] \int \frac{dx}{a^2+x^2}dx=\frac{1}{a} \arctan \frac{x}{a} +C \\[10pt] \int \frac{dx}{\sqrt{a^2-x^2}}dx=\arcsin \frac{x}{a} +C \\[10pt] \int \frac{dx}{\sqrt{a^2+x^2}}dx=\ln \left| x+\sqrt{x^2+a^2} \right| +C \\[10pt] \int \sh xdx = \ch x+C,\ch x=\frac{e^x+e^{-x}}{2} \\[10pt] \int \ch xdx = \sh x+C,\sh x=\frac{e^x-e^{-x}}{2} \\[10pt] \int \sqrt{x^2+a^2}dx=\frac{x}{2}\sqrt{x^2+a^2}+\frac{a^2}{2}\ln(x+\sqrt{x^2+a^2})+C axdx=ln(x)ax+Csec2xdx=tanx+Ccsc2dx=cotx+Csecxtanxdx=secx+C1x2 dx=arcsinx+C=arccosx+C1+x2dx=arctanx+C=arccotx+Ctanxdx=lncosx+Ccotxdx=lnsinx+Ca2x2dxdx=2a1ln axa+x +Ca2+x2dxdx=a1arctanax+Ca2x2 dxdx=arcsinax+Ca2+x2 dxdx=ln x+x2+a2 +Cshxdx=chx+C,chx=2ex+exchxdx=shx+C,shx=2exexx2+a2 dx=2xx2+a2 +2a2ln(x+x2+a2 )+C

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

G果

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值