[Python] 使用 Pandas 向量化处理时间戳

本文介绍了如何使用Pandas进行字符串日期到时间戳以及时间戳到字符串日期的转换,包括单个和批量操作。在单个转换中,提到了datetime和pandas.to_datetime的区别,后者默认为格林威治时间。批量转换中,强调了Pandas的向量化操作以提高效率。同时,转换时注意时间单位和时区的处理,以确保转换的准确性。
摘要由CSDN通过智能技术生成
1. 字符串日期 >> 时间戳 (单个)

对于单个的字符串格式的日期, 可以使用time模块得到其时间戳

date = '1970-01-01 10:00:00'
time.mktime(time.strptime(date, '%Y-%m-%d %H:%M:%S'))

或者使用numpy

date = '1970-01-01 10:00:00'
(np.datetime64(date) - np.datetime64('1970-01-01 08:00:00')) / np.timedelta64(1, 's')

两种方法结果一致
在这里插入图片描述
需要注意的是, 使用time模块可以直接得到中国时间时区对应的时间戳, 而通过numpy得到的是格林威治时间的时间戳, 两个时区相差8个时区, 所以第二种方法中需要减去'1970-01-01 08:00:00'

2. 时间戳 >> 字符串日期 (单个)

使用to_datet

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值