通用人工智能的能力评估框架-Levels of AGI: Operationalizing Progress on the Path to AGI
- 译自’Levels of AGI: Operationalizing Progress on the Path to AGI’,有所删节.
- 笔者能力有限,敬请勘误。
摘要
Google DeepMind提出一种针对通用人工智能 (Artificial General Intelligence, 简称AGI) 框架,该框架用于评估AGI的模型及早期版本的能力和表现。该分类框架详细阐述了AGI性能、适用范围及自治力(autonomy) 的不同层次。Google希望该框架能和自动驾驶技术等级框架一样有用,为AGI提供一套通用语言便于对AGI进行模型比较、风险评估及跟踪其发展进展。
Google分析了目前AGI的定义,提炼出兼具深度(能力-performance)与广度(适用性)的6大原则作为AIG评估框架的分类体系。
原始信息
引言
通用人工智能(Artificial General Intelligence, 简称:AGI) 是计算研究中重要又有争议的一个概念,它用于描述在大部分至少可以拥有与人类一样能力的人工智能系统。 得益于机器学习(Machine Learning ,ML) 模型的飞速发展,AGI的概念已经从哲学争论走到具体实践。目前有人认为AGI已出现在近代的大语言模型中(large language models,LLMs) ,有人预言AI将在10年人赶超人类,甚至有人直言现有的LLMs就是AGI。
关于AGI的定义100个AI领域的专家有会有到100种不同但又有联系的答案,事实上AGI概念的重要性源于它与AI的目标、预测与风险相关。
对许多领域的人来说,达到人类水平的“智能"是隐而不言的唯一目标。1955的达特茅斯人工智能会议(Dartmouth Artificial Intelligence Conference) 为研究AI技术的企业开创了人工智能的领域, 这些公司的使命宣言中包含了诸如“确保变革性的人工智能帮助到人类与社会"和"确保通用人工智能的目标是造福人类"等条款。
AGI的概念与它是否走向拥有更强、更接近或超越人类的通用性有关。 AGI通常是和"涌现"的概念交织在一块。这些涌现的能力包括与人类的技能形成互补的能力, 而这些能力有可能带动与AGI有关的新型互动等类型的新产业。同时对AGI能力的预测演变成了对社会影响的预测,比如,AGI可能会带来重大经济