jsRPC的流程 5、将浏览器控制台关掉,不要刷新页面,可以使用python调用了。4、打好断点,页面内局部刷新跳到断点位置,注入方法。3、在浏览器控制台注入环境,连接通信。1、打开浏览器,进入要爬取的页面。2、打开本地jsrpc服务。
python使用PIL库的一些方法 getpixel 用来获取图像中某一点的像素的RGB颜色值resize 对图像进行缩放Image.new 可以新建一张空图paste 将一张图片覆盖到另一张图片的指定位置去
Ubuntu18.04安装mongodb 1)安装依赖sudo apt-get install libcurl4 openssl2)下载源码wget https://fastdl.mongodb.org/linux/mongodb-linux-x86_64-ubuntu1604-4.2.8.tgz3)解压并且移动tar -zxvf mongodb-linux-x86_64-ubuntu1604-4.2.8.tgzmv mongodb-linux-x86_64-ubuntu1604-4.2.8 /usr/local/mon
python安装opencv 使用国外的安装速度慢,换成豆瓣源安装:pip install -i http://pypi.douban.com/simple opencv-python --trusted-host pypi.douban.com安装完毕后导入:import cv2
Splash抓取动态页面 一、安装 环境:Ubuntu18.04 1)安装docker 2)下拉splash镜像sudo docker pull scrapinghub/splash 3) 启动sudo docker run -p 8050:8050 scrapinghub/splash 4)访问http://服务器ip:8050/验证二、基本使用import requestsdef splash_render...
安装rvm报错解决 gpg: Can‘t check signature: No public key 如图所示:解决,按照提示gpg2 --keyserver hkp://pool.sks-keyservers.net --recv-keys 409B6B1796C275462A1703113804BB82D39DC0E3 7D2BAF1CF37B13E2069D6956105BD0E739499BDB如果失败,继续执行command curl -sSL https://rvm.io/mpapis.asc | gpg2 --import -command curl -sSL h..
docker打包镜像,上传到远程仓库,下载 一、生成docker镜像1、生成requirements文件pip3 freeze > requirements2、编写DockerFile文件FROM python:3.6MAINTAINER Jerry "xxx@qq.com"ENV PATH /usr/local/bin:$PATHADD . /codeWORKDIR /codeRUN pip3 install -r requirementsCMD python3 main.py3、在当前目录下打包镜像
安装crawlab后遇到的一些问题 进入docker命令行的方法:docker exec -i -t 容器id /bin/bash自动安装依赖:打包的文件中包含requirements.txt遇到问题:1)能够访问登录页面,使用初始密码登录时却报错解决办法:1、确保crawlab是最新版本2、修改docker-compose.yml文件,就用官网上的配置就行2)运行后报错找不到文件:解决办法:在打包爬虫代码时直接打包文件,不要连文件夹一起打包。打包好后上传。...
SQLAlchemy长时间未请求数据库连接断开 部署在服务器上面的项目运行正常,第二天早上起来发现除了静态页面,凡是调用数据库操作的页面均无法访问,提示500错误,初步判断为数据库连接出现问题。 SQLALCHEMY_TRACK_MODIFICATIONS = False SQLALCHEMY_RECORD_QUERIES = True SQLALCHEMY_POOL_SIZE = 1024 SQLALCHEMY_POOL_TIMEOUT = 90 SQLALCHEMY_POOL_RECYCLE = 3
解决vnc远程桌面无法与本地windows复制粘贴的问题 解决办法:在终端输入:vncconfig -nowin&注意:不要在通过xshell或者putty远程连接的终端输入,直接在vnc远程桌面上打开的终端输入。
linux 配置 redis 以及实现远程连接 linux 配置 redis 数据库1)查看配置信息。sudo vi /etc/redis/redis.conf2)绑定ip和端口,最好不要bind 0.0.0.0,port也改成其它的,防止被他人利用redis的漏洞恶意攻击或者植入病毒。bind 127.0.0.1port 63793)如果以守护进程运行,则不会在命令行阻塞,类似于服务;如果以非守护进程运行,则当前终端...
通过nginx访问服务器静态文件 server { listen 80; server_name localhost; location / { root /var/www/html/static; index index.html index.htm; } }
正则匹配反斜杠 淘宝购物车截取一部分信息如下,可通过unicode解码成汉字:\"id\":\"1317026845822269866\",\"operations\":[{\"style\":\"t5\",\"text\":\"\u8FD8\u52692\u592912\u65F6\",\"type\":\"operation\"},{\"id\":\"confirmGood\",\"style\":\"t3\",进行正则匹配时,使用 \\\\ 可以匹配反斜杠 \...
sklearn学习 -- 交叉验证 cross_val_score from sklearn.model_selection import cross_val_scorefrom sklearn.neighbors import KNeighborsClassifierfrom sklearn import datasetsfrom matplotlib import pyplot as pltiris = datasets.load_iris() # 导入数据x = iris.data # 特征y = iris.target # 标签.
sklearn学习 -- 标准化数据 preprocessing 正规化(标准化)数据可以提升机器学习的成效。from sklearn.datasets import make_classificationfrom sklearn.model_selection import train_test_splitfrom sklearn import preprocessingfrom sklearn.svm import SVC# 生成数据x, y = make_classification(n_samples=300, n_features=2, n_r
sklearn学习 -- 线性回归 LinearRegression from sklearn import datasetsfrom sklearn.linear_model import LinearRegressionfrom sklearn.model_selection import train_test_splitload_data = datasets.load_boston() # 波士顿房价数据集data_x = load_data.data # 特征data_y = load_data.target # 标签train.
sklearn学习 -- k近邻 百度百科:在特征空间中,如果一个样本附近的k个最近(即特征空间中最邻近)样本的大多数属于某一个类别,则该样本也属于这个类别。比如我们要预测中心点的颜色,以k=3为半径画一个圆(图中实线圆),此时红点多于蓝点,那么我们推测中心点为红色,以k=5为半径画一个圆(图中虚线圆),此时蓝点多于红点,那么我们推测中心点为蓝色。 代码如下:from sklearn import datasetsfrom s...
sklearn学习 -- 支持向量机核函数kernel 选择SVM的核函数kernel 1)linear:线性核,解决线性问题 2)poly:多项式核,解决偏线性问题 3)sigmoid:双曲正切核,解决非线性问题 4)rbf:径向基核,解决偏非线性问题...