陈知鱼
码龄6年
关注
提问 私信
  • 博客:200,652
    200,652
    总访问量
  • 25
    原创
  • 2,292,632
    排名
  • 50
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:浙江省
  • 加入CSDN时间: 2018-08-09
博客简介:

weixin_42926076的博客

查看详细资料
个人成就
  • 获得99次点赞
  • 内容获得27次评论
  • 获得648次收藏
  • 代码片获得249次分享
创作历程
  • 1篇
    2021年
  • 32篇
    2019年
  • 3篇
    2018年
成就勋章
TA的专栏
  • 树莓派
    1篇
  • 随读资讯
    1篇
  • 特征选择
    2篇
  • 安装教程
    5篇
  • 代码阅读
    1篇
  • 使用技巧
    5篇
  • 论文写作
    2篇
  • 理论学习
    12篇
  • 论文阅读
    4篇
  • 脑血栓(中风)研究
    2篇
创作活动更多

如何做好一份技术文档?

无论你是技术大神还是初涉此领域的新手,都欢迎分享你的宝贵经验、独到见解与创新方法,为技术传播之路点亮明灯!

182人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

机器学习中的正则化——L1范数和L2范数

机器学习中的正则化——L1范数和L2范数正则化是什么?为什么要正则化?LP范数L0范数(补充了解)L1范数L2范数L1范数和L2范数的区别以深度学习的角度看待L1范数和L2范数正则化是什么?为什么要正则化?在数学与计算机科学中,尤其是在机器学习和逆问题领域中,正则化是指为解决适定性问题或过拟合而加入额外信息的过程。 在机器学习和逆问题的优化过程中,正则项往往被加在目标函数当中。——维基百科正则化的本质是对某一问题加以先验的限制或约束(如L1范数和L2范数),以达到某种特定目的的一种手段或操作(函数的稀
原创
发布博客 2021.01.09 ·
5912 阅读 ·
7 点赞 ·
2 评论 ·
63 收藏

Ubuntu下nvidia驱动安装方式

转载自:https://blog.csdn.net/Willen_/article/details/1033939101.卸载驱动并重启电脑:sudo apt-get remove --purge nvidia-*sudo apt-get autoremove #特别重要sudo apt-get install -f #特别重要sudo reboot2.如果没有添加显卡驱...
转载
发布博客 2019.12.06 ·
357 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

常见开源脑影像分析产品

常见开源脑影像分析产品 软件名称 类型 描述 官网或下载链接 3D Slicer 通用 3D Slicer是一款开源免费的软件,用于图像处理和分析,支持三维处理切片等功能,可在多个平台使用,支持Windows, Linux以及Mac OS X。 MIMICS 通用 MIMICS是一款工具化的图像处理平台,功能丰富自主性强,系统采...
原创
发布博客 2019.11.02 ·
708 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

电脑硬件基础知识及购买指南

基础知识推荐黑冰教程1.0:https://www.bilibili.com/video/av66251569/?p=1内容包括:CPU 内存 硬盘 主板 显卡 机箱 电源 散热观看以上基础课程视频,大约8个小时。强烈推荐!!!购买指南推荐黑冰教程2.0: 电脑三大件CPU 内存 硬盘:https://www.bilibili.com/video/av680...
原创
发布博客 2019.10.11 ·
312 阅读 ·
0 点赞 ·
0 评论 ·
6 收藏

视觉基础:关于机器视觉、机器学习及人工智能领域

1.1重要会议(1)机器视觉重要会议CVPR:Conferenceon Computer Vision and Pattern Recognition, IEEE,五星ICCV:InternationalConference on Computer Vision, IEEE,五星ECCV:European Conferenceon Computer Vision,五星A...
转载
发布博客 2019.10.10 ·
408 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

树莓派之人脸检测

基础知识和教程树莓派的基础知识和教程,可参考知乎用户-张子豪的系列教程。或者直接通过其Github:https://github.com/TommyZihao/ZihaoTutorialOfRaspberryPi以及其B站视频:https://space.bilibili.com/1900783/#/配套食用,效果更佳。其内容包括: 树莓派是什么?能做什么? 树...
原创
发布博客 2019.10.09 ·
486 阅读 ·
0 点赞 ·
0 评论 ·
5 收藏

各种池化的实现

中值池化​ 中值池化是参考图像处理中的中值滤波而引申的一种池化方式。在目前CNN架构中极为少见,仅发现一篇论文:基于卷积神经网络和中值池化的人脸识别,不确定是否为水文。​ 在前向与反向传播过程中,中值池化类似于最大值池化,故不再赘述。​ 中值池化同样具有学习边缘和纹理结构的特性,同时具有抗噪性。代码描述参考:# 代码摘自开源项目:pytorch-image-modelsclas...
原创
发布博客 2019.10.22 ·
1720 阅读 ·
3 点赞 ·
3 评论 ·
13 收藏

神经网络中通过add和concate(cat)的方式融合特征的不同

cat与add知乎的回答 - 知乎https://www.zhihu.com/question/306213462​作者一:Hengkai Guo的回答 - 知乎https://www.zhihu.com/question/306213462/answer/562776112对于两路输入来说,如果是通道数相同且后面带卷积的话,add等价于concat之后...
原创
发布博客 2019.09.09 ·
22881 阅读 ·
20 点赞 ·
0 评论 ·
115 收藏

深度学习中的各种卷积网络

内容包括:1. 卷积 VS 互关联2. 深度学习中的卷积网络(单通道版,多通道版)3.3D 卷积4. 1x1 卷积5. 卷积算法6. 转置卷积(反卷积,棋盘效应)7. 空洞卷积(扩张卷积)8. 可分离卷积(空间可分离 卷积,深度可分离卷积)9. 扁平化卷积10. 分组卷积11. 混洗分组卷积12. 逐点分组卷积1-6:https://ai...
原创
发布博客 2019.09.09 ·
232 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

如何从零开始,入门 LaTeX?

1.TeX Live 下载及安装说明2. 看一份其实很短的 LaTeX 入门文档中文阅读文档:http://dralpha.altervista.org/zh/tech/lnotes2.pdf
原创
发布博客 2019.09.06 ·
260 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

研究生论文写作中常见的误区

问题1:摘要与结论几乎重合。多数情况下,论文中摘要部分与结论部分重复率超过70%。对于摘要而言,首先要用一小句话引出为什么做这个研究,然后,简单地概述采用了那些研究方法,然后,直接了当地说出这篇论文的最重要结果,而不是所有的结果,最后说说在这些工作之外重点讨论了一个什么现象就可以。对于论文的结论部分,不再需要把为什么做这个研究、怎么做这个研究说一遍了。正常情况下,应该直接明白地概述所发现的...
原创
发布博客 2019.08.24 ·
679 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Pytorch统计网络参数数量及查看网络中的参数

#网络参数数量def get_parameter_number(net): total_num = sum(p.numel() for p in net.parameters()) trainable_num = sum(p.numel() for p in net.parameters() if p.requires_grad) return {'Total': to...
原创
发布博客 2019.08.16 ·
7716 阅读 ·
4 点赞 ·
0 评论 ·
24 收藏

快速了解GCN(图卷积神经网络)

如何理解 Graph Convolutional Network(GCN)?https://www.zhihu.com/question/54504471推荐初学者可以先从知乎的这个问题出发,点赞最多的《从CNN到GCN的联系与区别——GCN从入门到精(fang)通(qi)》该篇文章非常详细且能够帮助初学者理解的讲述了GCN的大部分理论过程。再补充以后面几人回答的知识,便可以说对GCN有了...
转载
发布博客 2019.08.06 ·
406 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

关于神经网络的输出神经元个数的思考

博主对于神经网络的输出神经元个数的问题,起源于“识别手写数字的神经网络为什么需要10个输出而不是四个?”.实际上,这是两种不同的编码方式,两种的网络架构都是可行的,但是我们选择十个神经元而不是四个神经元来表达各类别,是因为这是经验上的选择,从效果来说,输出为十个的效果更好。具体理由如下:如果输出为四个,那么输出层的每个神经元需要学习的是“1和2的手写体之间的区别”之类的断言;...
原创
发布博客 2019.07.30 ·
7406 阅读 ·
5 点赞 ·
0 评论 ·
5 收藏

pytorch代码中常见的问题

1. molded_images = Variable(molded_images, volatile=True) 运行提示:UserWarning: volatile was removed and now has no effect. Use `with torch.no_grad():` instead.# Wrap in variable with to...
原创
发布博客 2019.07.22 ·
423 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

中风(脑卒中)研究意义和背景

国际权威医学杂志《柳叶刀》在今年六月发表了一篇重磅论文,分析了1990年到2017年中国34个省份(包括港澳台)居民的死亡原因。中国人目前的第一大死亡原因,是中风。根据百度汉语的中文释义,中风,也叫卒中(cùzhòng)。中医病证名。由脑血管栓塞或发生脑血栓、脑溢血等引起。主要症状是突然昏迷、口眼歪斜、语言困难、半身瘫痪,严重的即时死亡。《柳叶刀》上这篇名为《1990-2017年中国及其各...
原创
发布博客 2019.07.11 ·
8441 阅读 ·
5 点赞 ·
0 评论 ·
18 收藏

医学图像处理入门资料

医学图像处理综述:https://wenku.baidu.com/view/e16c795c84254b35eefd34ea.html深度学习在医学图像处理中的应用:https://zhuanlan.zhihu.com/p/27568550医学影像方面期刊感觉NEUROIMAGE, JACC-CARDIOVASCULAR IMAGE很权威,当然还有其他不少期刊。顶级的会议可以...
转载
发布博客 2019.07.11 ·
3839 阅读 ·
5 点赞 ·
2 评论 ·
106 收藏

核磁T1加权像和T2加权像的区别

转载
发布博客 2019.07.05 ·
13701 阅读 ·
8 点赞 ·
3 评论 ·
37 收藏

anaconda下安装visdom流程

流程步骤打开Anaconda Prompt输入命令 pip install visdom 图片示例:(点击红色圆框所在的位置,然后选择第一个选项,进去命令行操作页面) 安装成功之后接下来在命令行输入 visdom ,并在浏览器输入http://localhost:8097便可以进行访问。进入如下界面:...
原创
发布博客 2019.07.03 ·
6091 阅读 ·
1 点赞 ·
0 评论 ·
7 收藏

MIDL2018-图像回归

Predictive Image Regression for Longitudinal Studies with Missing Data论文链接:https://arxiv.org/abs/1808.07553他人评价:实际上,LDDMM本身就可以理解为一个深度网络,而且是结构最优化的深度网络,基于geodesic shooting的方案实际上和deep learning的前向卷积...
原创
发布博客 2019.06.28 ·
4636 阅读 ·
0 点赞 ·
1 评论 ·
13 收藏
加载更多