机器学习
悄悄不加糖
”勇气是解决大部分问题的答案。“|互联网搬砖ing|自我成长|学习记录
展开
-
NLP实战——基于枚举实现中文分词(python)
基于枚举法的停词逻辑:例子:我们经常有意见分歧词典:【“我们”,“经常”,“有”,“有意见”,“意见”,“分歧”】枚举满足词典的所有可能情况:我们、 经常、有、意见、分歧我们、经常、有意见、分歧实现所需的数据需求:中文词库,充当词典的作用以变量的方式提供了部分unigram概率 word_prob给定词典=[我们 学习 人工 智能 人工智能 未来 是], 另外我们给定unigram概率:p(我们)=0.25, p(学习)=0.15, p(人工)=0.05, p(智能)=0.1,原创 2020-06-09 22:49:20 · 624 阅读 · 0 评论 -
NLP实验——LDA主题模型
原理原理我就不细致讨论啦,放上几个比较好的博客yang_guo 机器学习-LDA主题模型笔记致Great NLP系列(三)LDA主题模型刘建平Pinard 文本主题模型之LDA(一) LDA基础我的理解比较简单:因为有一词多义的存在,通过建立词和主题之间的联系,通过Gibbs抽样,实现降维(将文档降维到主题)。gensim实现简单来说LDA实现主要几个步骤文本切词生成词典...原创 2020-04-02 12:34:47 · 651 阅读 · 0 评论 -
斯坦福机器学习笔记(三)线性代数相关知识
线性代数1.标量,向量,矩阵和张量标量(scalar):一个标量就是一个单独的数。用斜体表示标量,如 s∈R.向量(vector):一个向量是一列数,我们用粗体的小写名称表示向量。比如X,将向量X写成方括号包含的纵柱:X\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad X \quadX=[x1x2...x...原创 2019-03-14 11:18:08 · 207 阅读 · 0 评论 -
斯坦福机器学习笔记(一)
引言welcomewhat machine learning is?supervised learningunsupervised learning对于初学者很友好~课程链接:https://www.coursera.org/course/ml网pan: https://pan.baidu.com/s/1RbKRzRD1EmF35xUQ-RPrrQ 提取码: rnui(走过路过...原创 2019-03-11 21:02:29 · 194 阅读 · 0 评论 -
斯坦福机器学习笔记(二)
linear regression线性回归机器学习大致流程Created with Raphaël 2.2.0traning set(训练集)learning algorithm(学习算法)hypothesis h(函数or假设)H是已知 X到目的 Y的映射假设Hθ(xi)=θ0+θ1xiH_\theta(x^i)= \theta_0 + \theta_1x^iHθ(xi)=θ0+θ...原创 2019-03-12 21:32:13 · 195 阅读 · 0 评论