浙江大学【面板数据分析与STATA应用】——第四讲动态面板数据类型

本文深入探讨了动态面板数据模型在处理内生性问题时的应用,介绍了动态面板数据的特点及其在模型设定上的改进,讨论了差分GMM和系统GMM估计方法的原理与操作流程,特别强调了工具变量的选择与检验。

国际顶级期刊的编辑非常重视内生性问题,一定要处理好内生性问题,03讲了工具变量,本讲中通过动态面板数据能够较好处理内生性问题。

动态面板数据

动态面板数据(Dynamic Panel Data,DPD):是指在面板模型中,解释变量包含了被假释变量的滞后值。在动态面板数据类型中被解释变量和上一期变量之间存在关系。即, y i , t y_{i,t} yi,t y i , t − 1 y_{i,t-1} yi,t1之间是有关系的,上一期的值决定着下一期的值。

动态面板数据模型的设定是在原有的静态面板数据模型的基础上引入被解释变量的滞后期,而其他的都相同。
在这里插入图片描述
其中, u i t u_{it} uit为复合误差项, u i t u_{it} uit = μ i \mu_{i} μi + v i t v_{it} vit v i t v_{it} vit为随机扰动项, μ i \mu_{i} μi为不可观测的个体效应。可以很容易的看出,模型中 y i , t − 1 y_{i,t-1} yi,t1是一个内生变量,模型存在内生性问题,所以使用传统的最小二乘进行估计,估计结果是有偏且不一致的。

对上述动态面板数据模型进行拟合估计:首先进行一阶差分将原始模型中的不可观测的个体效应 μ i \mu_{i} μi去除,得到差分后的模型为:
在这里插入图片描述
由于 Δ y i , t − 1 \Delta{y_{i,t-1}} Δyi,t1 ε i , t − 1 \varepsilon_{i,t-1} εi,t1相关,所以 Δ y i , t − 1 \Delta{y_{i,t-1}} Δyi,t1 Δ ε i , t − 1 \Delta\varepsilon_{i,t-1} Δεi,t1是相关的,所以一阶差分后的动态面板数据模型仍存在内生性问题。Anderson等人在1982年提出了一种为差分变量 y i , t − 1 {y_{i,t-1}} yi,t1 - y i , t − 2 {y_{i,t-2}} y

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值