$4 群-环-域【提纲】

§4 群-环-域

C1 半群-群

半群

1)二元运算(合成律):映射 τ : X × X → X \tau : X \times X \rightarrow X τ:X×XX

  • 结合:(a*b)*c = a*(b*c)
  • 交换:a*b=b*a
  • 一般地,结合且交换二元运算使用+,结合二元运算使用*,为记法方便也常省略
  • 凯莱表:mij = ai * aj,构成的矩阵

2)代数结构(代数系统):(X, *),*为X上二元运算

3)半群: 运算结合,则称(X,*)为一个半群

4)幺半群:带有单位元的半群

  • 单位元 e ∈ X , s . t . : ∀ x ∈ X , x ∗ e = e ∗ x = x e\in X,s.t.:\forall x \in X, x *e = e*x = x eX,s.t.:xX,xe=ex=x,单位元若存在则唯一
  • 幺半群基数即X的基数,若基数有限,称半群为有限幺半群
  • 特别地,称 ( M ( Ω ) , ∘ ) (M(\Omega),\circ ) (M(Ω),)变换幺半群,其中M(Ω)为任意集合Ω上变换(即自映射)的集合

5)子半群对二元运算封闭且包含于母群子幺半群:包含有母群单位元的子半群

6)广义结合律:n个元素相乘(二元运算意义上)结果与加括号的方式无关

  • 二元运算满足广义结合律(归纳法)
  • 左正规化:从左到右依次加括号, ( ( ( ( x 1 x 2 ) x 3 ) …   ) x k − 1 ) x k ((((x_1x_2)x_3)\dots)x_{k-1})x_k ((((x1x2)x3))xk1)xk
  • 方幂:xn,由结合律得 xn xm = xm+n, (xn)m = xmn
    • xy = yx, ( x y ) n = x n y n (xy)^n = x^ny^n (xy)n=xnyn
      进一步,若 x i x j = x j x i , i , j = 1 , 2 , . . . , m x_ix_j = x_jx_i,i,j = 1,2,...,m xixj=xjxi,i,j=1,2,...,m,则 ( x 1 x 2 . . . x m ) n = x 1 n x 2 n . . . x m n (x_1x_2...x_m)^n = x_1^nx_2^n...x_m^n (x1x2...xm)n=x1nx2n...xmn

7)可逆 ∃ y ∈ X , s . t . x y = y x = e \exist y\in X,s.t. xy = yx =e yX,s.t.xy=yx=e,称x可逆,称y为x的逆元,记x-1

  • (ab)-1 = b-1a-1

8):所有元素可逆的幺半群

  • 回顾: X = { 1 , 2 , … , n } X = \{1,2,\dots,n\} X={1,2,,n}上全体置换(双射)构成的群 S n S_n Sn称为n阶对称群

  • 特别地,称可逆实矩阵集 G L n ( R ) GL_n(\mathbb{R}) GLn(R),连同矩阵乘法构成的群为 R \mathbb{R} Rn阶一般线性群

9)阿贝尔群:交换群

10)子群对运算封闭,含有逆元,包含于母群,若不相等,称真子群

  • 特别地,称行列式为1的实矩阵群 S L n ( R ) SL_n(\mathbb{R}) SLn(R)连同矩阵乘法构成的群为 R \mathbb{R} Rn阶特殊线性群,或者单位模群,

    是n阶一般线性群的子群

11)循环群 ∃ a ∈ G , s . t . ∀ g ∈ G , ∃ k ∈ Z , g = a k \exist a\in G,s.t. \forall g\in G,\exist k\in \mathbb{Z}, g = a^k aG,s.t.gG,kZ,g=ak,称a为生成元,循环群记为 ⟨ a ⟩ \langle a\rangle a

    • 无限阶: m ≠ n → a m ≠ a n m\neq n \to a^m \neq a^n m=nam=an
    • 有限阶: ∃ q , a q = e \exist q, a^q = e q,aq=e,最小正q称为阶,可证 q = C a r d ⟨ a ⟩ q = Card \langle a\rangle q=Carda

12)同构:存在同构映射的两个群 ( G , ∗ ) , ( G ′ , ∘ ) (G,*) ,(G',\circ) (G,),(G,)同构,记为 G ≃ G ′ G\simeq G' GG

  • 同构映射双射f使得 ∀ a , b ∈ G : f ( a ∗ b ) = f ( a ) ∘ f ( b ) \forall a,b\in G:f(a*b) = f(a)\circ f(b) a,bG:f(ab)=f(a)f(b),性质:

    • f ( e ) = e ′ f(e) = e' f(e)=e
    • f ( a − 1 ) = f ( a ) − 1 f(a^{-1}) = f(a)^{-1} f(a1)=f(a)1
    • 逆映射存在且也是一个同构
  • 自同构:G到自身的自同构映射

    • G上自同构构成S(G)(全体双射群)的一个子群 ( A u t ( G ) , ∘ , e Ω ) (Aut(G),\circ,e_{\Omega}) (Aut(G),,eΩ)
    • 内自同构群: ( I n n ( G ) , ∘ , I e ) (Inn(G),\circ,I_e) (Inn(G),,Ie),元素为 I a : g ↦ a g a − 1 I_a: g \mapsto aga^{-1} Ia:gaga1,是Aut(G)的一个子群,与G同态
  • 定理:任意两个同阶循环群同构

  • 定理:任意一个n阶有限群同构于n阶对称群 S n S_n Sn的某个子群

    证明: S n ⊃ { L g 1 , L g 2 , … , L g n } ( L a ( x ) = a x , a ∈ G ) f : a ↦ L a S_n \supset \{L_{g_1},L_{g_2},\dots,L_{g_n}\}(L_a (x) = ax,a\in G)\\f :a \mapsto L_a Sn{Lg1,Lg2,,Lgn}(La(x)=ax,aG)f:aLa

  • 无限群存在同构真子群

13)同态:映射f使得 ∀ a , b ∈ G : f ( a ∗ b ) = f ( a ) ∘ f ( b ) \forall a,b\in G:f(a*b) = f(a)\circ f(b) a,bG:f(ab)=f(a)f(b)

  • 若f是单射,称为单同态;若f是满射,称为满同态
  • ker ⁡ f = { g ∈ G ∣ f ( g ) = e ′ } \ker{f} = \{g \in G|f(g) = e'\} kerf={gGf(g)=e}
  • 群到自身的同态映射称自同态
  • 回顾: C 2 = ⟨ − 1 ⟩ C_2 = \langle -1 \rangle C2=1,则符号映射 s g n : π ↦ ϵ π sgn:\pi \mapsto \epsilon_\pi sgn:πϵπ,构成 S n → C 2 S_n \to C_2 SnC2的一个同态
    其核 ker ⁡ s g n = A n \ker{sgn } = A_n kersgn=An为一个 1 2 n ! \frac{1}{2}n! 21n!阶群,称为交错群

C2 环

1):(R,+,·),满足(R,+)是阿贝尔群,(R,·)是半群,乘法对加法分配

  • 广义环研究中,可能不要求乘法群是半群,称为非结合环
  • 环的单位元:乘法半群的单位元,不一定存在
  • ( Z , + , ⋅ ) (\mathbb{Z},+,·) (Z,+,)称为整数环, ( M n ( R ) , + , ⋅ ) (M_n(R),+,·) (Mn(R),+,)称为全矩阵环,或n阶方阵环
  • 函数环 ( R X , ⊕ , ⊙ ) (R^X,\oplus,\odot ) (RX,,)
    • R X = { X → R } R^X=\{X\to R\} RX={XR},为X到任意环R的映射集
    • ⊕ \oplus 为逐点加: ( f ⊕ g ) ( x ) = f ( x ) + g ( x ) (f\oplus g)(x) = f(x) + g(x) (fg)(x)=f(x)+g(x)
    • ⊙ \odot 为逐点乘: ( f ⊙ g ) x = f ( x ) ⋅ g ( x ) (f\odot g)x=f(x)\cdot g(x) (fg)x=f(x)g(x)
    • 单位元: 1 X : x ↦ 1 1_X:x\mapsto 1 1X:x1;零元 0 X : x ↦ 0 0_X:x\mapsto 0 0X:x0。均为常函数
    • 显然,有界函数环,连续函数环,可微函数环都是其子环

2)子环:R的加法群的子群核乘法半群的子半群构成的环

  • 子环交仍是子环
  • ( Z , + , ⋅ ) ⊂ ( Q , + , ⋅ ) ⊂ ( R , + , ⋅ ) (\mathbb{Z},+,·)\sub(\mathbb{Q},+,·)\sub(\mathbb{R},+,·) (Z,+,)(Q,+,)(R,+,),同样, ( M n ( Z ) , + , ⋅ ) ⊂ ( M n ( Q ) , + , ⋅ ) ⊂ ( M n ( Q ) , + , ⋅ ) (M_n(Z),+,·)\sub(M_n(Q),+,·)\sub(M_n(Q),+,·) (Mn(Z),+,)(Mn(Q),+,)(Mn(Q),+,)

3)环的性质:

  • a ⋅ 0 = 0 ⋅ a = 0 a \cdot 0 = 0\cdot a = 0 a0=0a=0 ( − a ) ⋅ b = a ⋅ ( − b ) = − ( a b ) (-a)\cdot b=a\cdot(-b)=-(ab) (a)b=a(b)=(ab)
  • 广义分配律: ∑ i = 1 n a i ∑ i = 1 n b i = ∑ i = 1 n ∑ j = 1 n a i b j \sum_{i=1}^n a_i\sum_{i=1}^nb_i=\sum_{i=1}^n\sum_{j=1}^n a_ib_j i=1naii=1nbi=i=1nj=1naibj,故 ∀ n ∈ Z , a , b ∈ R : n ( a b ) = ( n a ) b = a ( n b ) \forall n\in \mathbb{Z},a,b\in R:n(ab) = (na)b = a(nb) nZ,a,bR:n(ab)=(na)b=a(nb)
  • 若环的乘法交换,则满足牛顿二项式公式 ( a + b ) n = ∑ k = 0 n C n k a k b n − k (a+b)^n = \sum_{k=0}^n C_n^k a^kb^{n-k} (a+b)n=k=0nCnkakbnk
  • 1 = 0 1 = 0 1=0则环R中所有元素为0。故非平凡环中, 1 ≠ 0 1\neq 0 1=0

4)剩余类环:

  • 同余式:模m余数相同称为模m同余,记为 n ≡ n ′ ( m o d    m ) n \equiv n'(\mod{m}) nn(modm),称同余式

  • 剩余类环 ( Z m , ⊕ , ⊙ ) (\mathbb{Z}_m,\oplus,\odot) (Zm,,)

    • Z m = { { r } m = r + m Z ∣ r = 0 , 1 , … , m − 1 } \mathbb{Z}_m=\{\{r\}_m = r + m\mathbb{Z} |r = 0,1,\dots,m-1\} Zm={{r}m=r+mZr=0,1,,m1}, { r } m \{r\}_m {r}m称为模m剩余类
    • ⊕ \oplus :模m加法 ${a}_m\oplus {b}_m={(a+b)% m}_m $
    • ⊙ \odot :模m乘法 { a } ⊙ { b } = { ( a ⋅ b ) % m } m \{a\}\odot \{b\} = \{(a\cdot b)\%m\}_m {a}{b}={(ab)%m}m
    • 单位元: { 1 } m \{1\}_m {1}m;零元: { 0 } m \{0\}_m {0}m
    • 方便起见,记 { k } m \{k\}_m {k}mw为 k ˉ \bar{k} kˉ,甚至记为 k k k
  • { 0 , 1 , … , m − 1 } \{0,1,\dots,m-1\} {0,1,,m1}模m剩余类的导出集,实际上与 Z m \mathbb{Z}_m Zm同构

5)同态:存在同态映射的两个环 ( R , + , ⋅ ) , ( R ′ , ⊕ , ⊙ ) (R,+,\cdot),(R',\oplus,\odot) (R,+,),(R,,),记为 R ≅ R ′ R\cong R' RR

  • 同态映射: f ( a + b ) = f ( a ) ⊕ f ( b ) f ( a ⋅ b ) = f ( a ) ⋅ f ( b ) f(a+b) = f(a)\oplus f(b)\\f(a\cdot b) = f(a) \cdot f(b) f(a+b)=f(a)f(b)f(ab)=f(a)f(b)
  • 满同态下, f ( 1 ) = 1 , f ( 0 ) = 0 ′ , f ( n a ) = n f ( a ) f(1) = 1,f(0) = 0',f(na)=nf(a) f(1)=1,f(0)=0,f(na)=nf(a)
  • 核: ker ⁡ f = { a ∈ R ∣ f ( a ) = 0 ′ } \ker{f} = \{a\in R|f(a) = 0'\} kerf={aRf(a)=0}

6)零因子:

  • a , b ≠ 0 , a b = 0 a,b\neq 0,ab =0 a,b=0,ab=0,则a称为左零因子,b称为右零因子。交换环中简称零因子。0本身称平凡零因子
  • 无零因子环:除0外无其它零影子
  • 整环:非平凡(1≠0)、无零因子、交换环
  • 定理:有单位元非平凡交换环是整环(即无零因子) iff R中消去律成立
    • 消去律: ∀ a , b , c ∈ R : a b = a c , a ≠ 0 → b = c \forall a,b,c\in R:ab=ac , a\neq 0\to b=c a,b,cR:ab=ac,a=0b=c

7)可逆: a b = 1 ab= 1 ab=1,称a右可逆,b左可逆

  • 定理:无零因子环或者交换环中,左右可逆性相同,左右逆相同

    小证:无零因子环中 a b = 1 → a b a = a , a ≠ 0 → a ( b a − a ) = a , a ≠ 0 → b a − 1 = 0 → b a = 1 ab = 1 \to aba = a,a\neq0 \to a(ba-a) = a, a\neq 0\to ba-1 = 0\to ba = 1 ab=1aba=a,a=0a(baa)=a,a=0ba1=0ba=1

  • 显然,若R是带单位元的环,则所有可逆元素构成一个乘法群 U ( R ) U(R) U(R)

C3 域

1)除环(斜域):乘法满足[ R ∗ = R ∖ { 0 } R^* = R\setminus\{0\} R=R{0}关于乘法构成一个群]的环。

  • 非零元素可逆
  • 没有零因子

2)交换除环

  • 分式(商、比例式) a b − 1 ab^{-1} ab1记为 a b \frac{a}{b} ba

3)子域:域P中为域的子环F,称F为子域,P为扩域

  • F ( a ) F(a) F(a)为P中包含{F,a}的所有子域的交(即最小化)

4)同构:作为环同构

  • 同态:注意到 ker ⁡ f ≠ 0    ⟹    ker ⁡ f = P \ker{f}\neq 0 \implies \ker{f} = P kerf=0kerf=P,f一般是单同态

5)定理:剩余类环 Z m \mathbb{Z}_m Zm是域 iff m是素数

  • 推论(费马小定理): m ∤ p m\nmid p mp(素数)则 m p − 1 ≡ 1 ( m o d    p ) m^{p-1} \equiv 1(\mod p) mp11(modp)

6)素域:不包含任何真子域的域

  • 定理: ∀ P , ∃ 1 P o ⊂ P , P 0 \forall P ,\exist_1 P_o \sub P,P_0 P,1PoP,P0为素域。且 P 0 ≅ Q P_0 \cong \mathbb{Q} P0Q P 0 ≅ Z p P_0 \cong\mathbb{Z}_p P0Zp

    小证:令 f : Z → P : n ↦ n ⋅ 1 ( i . e . 1 + 1 + ⋯ + 1 ) , ker ⁡ f = m Z f:\mathbb{Z} \to P:n \mapsto n\cdot 1(i.e. 1+1+\dots+1),\ker f = m\mathbb{Z} f:ZP:nn1(i.e.1+1++1),kerf=mZ

    • 若m = 0,可证 f : Q → P : f ( p q ) = p ⋅ 1 q ⋅ 1 f:\mathbb{Q}\to P:f(\frac{p}{q}) = \frac{p\cdot 1}{q\cdot 1} f:QP:f(qp)=q1p1为双射,即P中分式构成的域同构于 Q \mathbb{Q} Q
    • 若m ≠ 0,定义 f ∗ : k ˉ m ↦ f ( k ) f^*:\bar{k}_m \mapsto f(k) f:kˉmf(k),此时 f ∗ ( Z p ) f^*(Z_p) f(Zp)为其素子域
  • 域的特征( c h a r   P char\ P char P):使得 n ⋅ 1 n\cdot 1 n1 0 0 0的最小正整数,若不存在则为0

    • P 0 ≅ Q P_0 \cong \mathbb{Q} P0Q,则特征为0,此时P加法群中1的阶无限

    • P 0 ≅ Z p P_0 \cong \mathbb{Z}_p P0Zp则特征为p,此时P加法群中任意非零元素有阶p

      小证: p ⋅ x = x + x + ⋯ + x = ( p ⋅ 1 ) x = 0 p\cdot x = x+x+\dots +x = (p\cdot 1)x = 0 px=x+x++x=(p1)x=0

7)伽罗瓦域:包含有限个元素的域,记为 G F ( p ) GF(p) GF(p) F p \mathbb{F}_p Fp

8)注记:高斯消元法、行列式理论、克拉默法则中没有对元素的性质进行约束,故将其元素限制在域P中仍然适用

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值