一个文本纠错的小例子

本文介绍了文本纠错的两种主要类型:Non-word和Real-word拼写错误,以及处理这两种错误的步骤和方法,包括编辑距离、贝叶斯定理和语言模型的应用。通过实例展示了如何进行英文单词的纠错,并强调了语料库的重要性和初步筛查在处理Real-word错误中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文本纠错又称为拼写错误或者拼写检查,由于纯文本往往来源于手打或者OCR识别,很可能存在一些错误,因此此技术也是一大关键的文本预处理过程,一般存在两大纠错类型。

Non-word拼写错误

第一种是Non-word拼写错误,表示此词汇本身在字典中不存在,比如把“要求”误写为“药求”,把“correction”误拼写为“corrction”。

操作步骤:
这类问题的解决思路可分为两个步骤,首先找到字典中与错拼词汇相近的词作为候选词,接着基于特定算法找出与错拼词关联最高的一个或多个单词作为纠正选项。例如,对于错误单词“atress”,存在多个相近候选词[“actress”,“caress”,“stress”,“across”,“cress”],接下来通过算法计算得“actress”为纠正选项。那么如何确定候选项呢?对于英文而言比较简单,通过编辑距离运算(即对单词中的字母进行增删改操作)便可得到一系列相近候选词汇。而对于中文来说,存在两种相近模式,一是拼写相近,比如在拼音打字时出错,也适用于编辑距离,二则是字形相近,比如在五笔打字时出错,一般需要通过构建相近字词表查找候选词汇。而有了候选列表后,如何选出最有可能的纠正选项呢?可以根据贝叶斯定理,得到如下表达式:
P(候选项|错误单词)∝ P(候选项)* P(错误单词|候选项)
也就是说,某一候选项的可能性,取决于“此选项本身在语料中出现的可能性”和“人们意图打候选项时会错打成错误单词的可能性”的乘积。前者可视为uni-gram语言模型,需要计算词语的出现频次,当然也可以扩张至二阶或三阶,比如计算“错误单词左边单词+候选项+错误单词右边单词”在语料中的出现情况,以便更好地考虑语境信息;而后者需要基于历史的错误项、纠正项相对应的语料进行概率统计。

Real-word拼写错误
第二种情况是Real-word拼写错误,意思是指单词本身没有错误,但是不符合上下文语境,常常涉及语法语义层面的错误,比如把“我现在在公司里”错写成“我现在在公式里”,这类错误计算量较大,因为每个单词都是待纠错对象。
操作步骤
通常的解决方案与第一种情况类似,首先针对每个单词根据编辑距离、同音词、近形词等方式选出候选项(也包括单词本身);接下来计算基于候选项的语言模型,以及在候选项情况下出现错误单词的条件概率;如果综合计算而得单词本身出现在此语境中的概率较大,则不进行纠正,否则推荐纠正项。

相关知识点
综合而言,纠错涉及到的知识点有贝叶斯定理、语言模型、编辑距离、词表构建、语料统计等基础技术。接下来我们通过一个实例,简单展示对于错拼英文单词的纠错。

代码实例
我们的语料为“bayes_train_text.txt”,首先统计语料中各单词的出现情况:

import re,collections
 
# 提取语料库中的所有单词并且转化为小写
def words(text):
	return re.findall("[a-z]+", text.lower())
	 
#统计词频
def train
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值