matlab利用字符作画(汉字绘画)

本文介绍了如何使用MATLAB通过字符密度制作汉字画,包括算法原理、实现过程、动图与视频的生成,并探讨了如何利用较少字符提高分辨率以及边缘线条在字符作画中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 算法实现原理

算法的原理比较简单,就是利用不同字符具有不同的密度,比如字符“一”具有较低的密度,字符“曩”具有较高的密度。对于白底黑字来说,密度越高意味着该点附近具有较高的灰度值,这样文字就与图像的灰度值建立了一一对应的关系。

所以算法主要包括两个部分,一个是建立一个字符库,包含字符与其密度之间的关系;一个是实现字符密度和图像灰度值之间转换的方法。

2 实现

这里我使用的字符库为常用汉字5000个,图像采用cameraman作为要转换的图像。
常用汉字5000个地址:https://my.oschina.net/u/2510243/blog/716652

在这里插入图片描述
之后将5000个汉字输出在一个文字框中,统计汉字图像中的黑色部分的比例。
具体代码如下,其中str5000为之间保存的5000汉字,strH_gray为每个字符的密度值:

%字符转密度值
clear
load('str5000.mat')
strH=str5000;

N=length(strH);
strH_gray=zeros(N,1);
figure('color',[1 1 1])%白色背景
%循环5000个字
for j=1:N

%绘制文字
text(0,0,strH(j),'FontUnits','normalized','FontSize',0.9,'verticalAlignment','bottom');
xlim([0,0.5]);ylim([0,0.5]);
set(gcf,'Position',[488 342 375 420]);
set(gca,'Position',[0.0 0.0 1 1]);
axis off

%获取文字图像信息
F = getframe;
strdata=F.cdata;
imshow(F.cdata)

%计算文字所占密度
strdata1=strdata(:,:,1);
strdata1=uint8((strdata1~=255));
n=length(strdata1(:));
s=sum(strdata1(:));
strH_gray(j)=s/n;

clf%清空图像
end

%最后保存文字密度表strH_gray

之后拥有文字表和对应的文字密度表后,就可以创建文字密度和图像灰度值之间一一对应的关系了。具体代码如下:

clear
load('str5000_gray.mat')%文字密度表
load('str5000.mat')%文字表

strH=[str5000];
strH_gray=[str5000_gray];


x=imread('camera.jpg');
x=imresize(x,[32,32]);
x=double(x);%uint8格式不能表示0-1小数
strid=zeros(size(x(:,:,1)));

%将RGB转换为灰度。可以用rgb2gray简化处理
im_gray = ((x(:,:,1)).^2.2 * 0.2973 + (x(:,:,2)).^2.2 * 0.6274 + (x(:,:,3)).^2.2 * 0.0753).^(1/2.2);
im_gray=1-im_gray/255;

%由于文字最大密度也不能到100%,而图像却可以很暗,所以需要对文字的密度值进行一定缩放
enlarge=max(im_gray(:))/max(strH_gray(:));

%对每一个像素点的灰度值与文字密度进行匹配,记录下对应的文字编码
for j=1:length(im_gray(:))
im_g_j=im_gray(j);
[~,minid]=min(abs(im_g_j-strH_gray*enlarge));
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值