Wide&deep算法原理及思考

Wide&Deep模型结合了LR模型的记忆能力与深度学习的泛化能力,用于解决推荐系统中的探索与利用问题。Wide部分通过特征交叉处理历史行为数据,Deep部分则通过Embedding捕获新特征组合。在Google Play业务场景中,Wide关注已下载app的相关性,Deep难以处理小众app的推荐。
摘要由CSDN通过智能技术生成

文章主要是对wide&deep的总结,和自己对于模型的思考

模型解决问题

使得训练得到的模型能够同时获得记忆(memorization)和泛化(generalization)能力。

我理解为解决推荐系统EE问题的一种思路

记忆:Exploitation

泛化:Exploration

模型出现之前的解决方案和问题

一、记忆:Exploitation:

1、原始Dense特征 => Onehot离散化 => 原始高维稀疏特征 => 原始高维稀疏特征叉乘特征 => LR模型

优点:

  • 记住某些特殊的特征组合,根据历史行为数据,产生的推荐通常和用户已有行为的物品直接相关的物品

缺点:

  • 人工设计
  • 因为所有特征叉乘,可能出现细粒度的叉乘,可能过拟合
  • 无法捕捉从未曾出现过的特征对

二、泛化:Exploration

1、Deep层处理高维稀疏特征 => 高维稀疏特征EMbedding => 低维稠密特征

优点:

  • 更少的人工参与
  • 对历史上没有出现的特征组合有更好的泛化性

缺点:

  • 当用户物品矩阵非常稀疏时,针对独特爱好的users和小众items,NN很难为users和items学习到有效的embedding。

  • 这种情况下,大部分user-item应该是没有关联的,但dense embedding 的方法还是可以得到对所有 user-item pair 的非零预测,因此导致 over-generalize并推荐不怎么相关的物品。

所以,wide&deep结合两者的优点,wide对应Exploitation,deep对应Exploration。

模型原理

wide&deep结构

一、Wide:主要解决【记忆】问题

  • 叉乘特征为:
    ϕ k ( x ) = ∏ 1 d x i c k i , c k i ∈ { 0 , 1 } \phi_k(x)=\prod_{1}^{d}x_i^{c_{ki}}, c_{ki}\in \{0,1\} ϕk(x)=1dx

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值