【Foundation of data science】

Clustering

Clustering ,翻译为"聚类",就是把相似的东西分为一组,同 Classification(分类)不同, classifier 从训练集中进行"学习",从而能够对未知数据进行分类,这种提供训练数据的过程叫做 supervised learning (监督学习),而在聚类的时候,我们并不关心某一类是什么,我们只需要把相似的东西聚到一起,因此,一个聚类算法通常只需要知道如何计算相似度就可以工作了,因此 clustering 通常并不需要使用训练数据进行学习,这在 Machine Learning 中被称作 unsupervised learning (无监督学习)。

一、聚类的两种常用的假设

1、基于中心的聚类(Center-based clusters)

  1. k-center clustering: 最小化数据点到其中心的最大距离,即minimize
    Φ k c e n t e r ( C ) = max ⁡ j = 1 max ⁡ a i ∈ C j d ( a i , c j ) \Phi_{k c e n t e r}(\mathcal{C})=\max _{j=1} \max _{\mathbf{a}_{i} \in C_{j}} d\left(\mathbf{a}_{i}, \mathbf{c}_{j}\right) Φkcenter(C)=j=1maxaiCjmaxd(ai,cj)
    例如,消防站位置问题(最小化消防站可能需要前往的最大距离)。
  2. k-median clustering: 最小化数据点到其中心的距离之和,即minimize Φ k m e d i a n ( C ) = ∑ j = 1 k ∑ a i ∈ C j d ( a i , c j ) \Phi_{k m e d i a n}(\mathcal{C})=\sum_{j=1}^{k} \sum_{\mathbf{a}_{i} \in C_{j}} d\left(\mathbf{a}_{i}, \mathbf{c}_{j}\right) Φkmedian(C)=j=1kaiCjd(ai,cj)
    k-median比k-center更具有抗噪性,因为少数异常值通常不会更改最佳解决方案。
  3. k-means clustering: 最小化数据点到其中心的距离平方和,即minimize Φ k m e a n s ( C ) = ∑ j = 1 k ∑ a i ∈ C j d 2 ( a i , c j ) \Phi_{k m e a n s}(\mathcal{C})=\sum_{j=1}^{k} \sum_{\mathbf{a}_{i} \in C_{j}} d^{2}\left(\mathbf{a}_{i}, \mathbf{c}_{j}\right) Φkmeans(C)=j=1kaiCjd2(ai,cj)
    k-means比k-median更重视异常值,因为对距离进行了平方,这会放大大的值。

当数据由 R d R^d Rd中的点组成时,更常使用k-means准则,而当我们具有有限度量时,k-median更常用,即数据是具有边距离的图中的节点。

2、高密度聚类

如果我们不相信我们的聚类是基于中心的,那么通常做出的的另一个假设是聚类由高密度区域组成,他们之间是低密度的“护城河”。
在这里插入图片描述

二、k-Means Clustering

1、动机

考虑使用k-means准则的最大似然动机。假设我们的数据是由k个良好分离的球形高斯密度等权混合生成的,这k个高斯密度的均值分别为 μ 2 , μ 2 , … , μ k \mathbf{\mu}_2, \mathbf{\mu}_2, \dots, \mathbf{\mu}_k μ2,μ2,,μk,方差都为1。从而混合分布的密度为 Prob ⁡ ( x ) = 1 ( 2 π ) d / 2 1 k ∑ i = 1 k e − ∣ x − μ i ∣ 2 \operatorname{Prob}(\mathrm{x})=\frac{1}{(2 \pi)^{d / 2}} \frac{1}{k} \sum_{i=1}^{k} e^{-\left|\mathrm{x}-\mu_{i}\right|^{2}} Prob(x)=(2π)d/21k1i=1kexμi2
定义最接近x的中心为 μ ( x ) \mu(x) μ(x),由于指数函数快速下降,我们可以用 e − ∣ x − μ ( x ) ∣ 2 e^{-|\mathbf{x}-\boldsymbol{\mu}(\mathbf{x})|^{2}} exμ(x)2近似 ∑ i = 1 k e − ∣ x − μ i ∣ 2 \sum_{i=1}^{k} e^{-\left|\mathbf{x}-\boldsymbol{\mu}_{i}\right|^{2}} i=1kexμi2。因此, Prob ⁡ ( x ) ≈ 1 ( 2 π ) d / 2 k e − ∣ x − μ ( x ) ∣ 2 \operatorname{Prob}(\mathbf{x}) \approx \frac{1}{(2 \pi)^{d / 2} k} e^{-|\mathbf{x}-\mu(\mathbf{x})|^{2}} Prob(x)(2π)d/2k1exμ(x)2
从而,从混合分布中选择样本点的可能性为 1 k n 1 ( 2 π ) n d / 2 ∏ i = 1 n e − ∣ x ( i ) − μ ( x ( i ) ) ∣ 2 = c e − ∑ i = 1 n ∣ x ( i ) − μ ( x ( i ) ) ∣ 2 \frac{1}{k^{n}} \frac{1}{(2 \pi)^{n d / 2}} \prod_{i=1}^{n} e^{-\left|\mathbf{x}^{(\mathrm{i})}-\mu\left(\mathrm{x}^{(\mathrm{i})}\right)\right|^{2}}=c e^{-\sum_{i=1}^{n}\left|\mathrm{x}^{(\mathrm{i})}-\mu\left(\mathrm{x}^{(\mathrm{i})}\right)\right|^{2}} kn1(2π)nd/21i=1nex(i)μ(x(i))2=cei=1nx(i)μ(x(i))2
因此,最小化到聚类中心的距离平方和得到最大似然 μ 2 , μ 2 , … , μ k \mathbf{\mu}_2, \mathbf{\mu}_2, \dots, \mathbf{\mu}_k μ2,μ2,,μk

2、k-means目标的性质

引理2.1 当x是质心时,数据点到x的距离平方和得到最小化,即 x = 1 n ∑ i a i \mathbf{x}=\frac{1}{n} \sum_{i} \mathbf{a}_{\mathbf{i}} x=n1iai
证明:我们的目标是寻找x,最小化 ∑ i ∣ a i − x ∣ 2 \sum_{i}\left|\mathbf{a}_{\mathbf{i}}-\mathbf{x}\right|^{2} iaix2。通过简单计算可得
∑ i ∣ a i − x ∣ 2 = ∑ i ∣ a i − c ∣ 2 + n ∣ c − x ∣ 2 \sum_{i}\left|\mathrm{a}_{\mathrm{i}}-\mathrm{x}\right|^{2}=\sum_{i}\left|\mathrm{a}_{\mathrm{i}}-\mathrm{c}\right|^{2}+n|\mathrm{c}-\mathrm{x}|^{2} iaix2=iaic2+ncx2等式右边第一部分是确定的数,第二部分最小值为0,在 x = c x=c x=c处取得。

3、Lloyd’s Algorithm

k-means聚类一个常用的算法是Lloyd’s Algorithm。
Lloyd’s Algorithm:

  1. 初始化k个中心(随机选择?);
  2. 将每个点与最靠近它的中心聚类;
  3. 找到每个聚类的质心作为新中心替换旧中心;
  4. 重复Step 2和Step 3直到聚类中心收敛(根据一些准则,例如k-means得分不再提高)

Lloyd算法不一定能找到全局最优解,但会找到局部最优解。算法中一个重要的步骤是初始化。下面的例子说明了初始中心会显著影响聚类结果。
在这里插入图片描述
上图中有三个密集簇,分别以 ( 0 , 1 ) , ( 0 , − 1 ) (0,1),(0,-1) (0,1),(0,1) ( 3 , 0 ) (3,0) (3,0)为中心。但如果我们以一个中心 ( 0 , 1 ) (0,1) (0,1)和两个接近 ( 3 , 0 ) (3,0) (3,0)的中心初始化,那么 ( 0 , 1 ) (0,1) (0,1)处的中心会移到 ( 0 , 0 ) (0,0) (0,0),而 ( 3 , 0 ) (3,0) (3,0)处的两个中心会呆在那里,将这一簇分成两部分。

因此,对于初始中心的选择要遵循一定的策略。最常用的策略为“最远遍历”。首先选择一个数据点作为初始中心 c 1 c_1 c1,然后选择距离 c 1 c_1 c1最远的数据点作为 c 2 c_2 c2,然后选择距离 { c 1 , c 2 } \{c_1,c_2\} {c1,c2}最远的数据点作为 c 3 c_3 c3,等等。直到选足了k个点,将它们用作初始中心。注意到,这样可以在图7.2中得到正确的聚类。

“最远便利”会被少数异常值欺骗。k-means++对此进行改进,基于它们与已挑选中心的距离来加权数据点,具体而言,与距离平方成比例。然后根据这些权重概率地选择下一个中心。另一种方法是为k-means问题运行一些其他近似算法,然后使用其输出作为Lloyd算法的起点。

4、Ward’s Algorithm

从它自己的簇中的每个数据点开始,然后重复的合并成对的簇,直到只剩下k个簇。具体来说,Ward算法合并了最小化k-means成本增量的两个簇,即合并 ( C , C ′ ) \left(C, C^{\prime}\right) (C,C) minimizing
cost ⁡ ( C ∪ C ′ ) − cost ⁡ ( C ) − cost ⁡ ( C ′ ) \operatorname{cost}\left(C \cup C^{\prime}\right)-\operatorname{cost}(C)-\operatorname{cost}\left(C^{\prime}\right) cost(CC)cost(C)cost(C)

4、一维中的k-Means聚类

假设已经得到了 a 1 , … , a i a_{1}, \dots, a_{i} a1,,ai的所有最优k’-means聚类( ∀ k ′ ≤ k \forall k'\le k kk), 要计算 a 1 , … , a i + 1 a_{1}, \dots, a_{i+1} a1,,ai+1的最优k’-means聚类,即寻找 j j j,最小化
d i s t ( a 1 , ⋯   , a j − 1 ) + d i s t ( a j , ⋯   , a i + 1 ) dist(a_1,\cdots,a_{j-1})+dist(a_j,\cdots,a_{i+1}) dist(a1,,aj1)+dist(aj,,ai+1)
前者聚成 k ′ − 1 k'-1 k1类,后者聚成1类。

对于给定的 i i i,我们需要计算 k ′ = 1 , ⋯   , k k'=1,\cdots,k k=1,,k,每次计算 a 1 , … , a i a_{1}, \dots, a_{i} a1,,ai的k’-means聚类时,需要运行 i i i j j j i ≤ n i\le n in)。因此运行时间为 O ( k n ) O(kn) O(kn)。而一共有 n n n i i i,因此总的运行时间为 O ( k n 2 O(kn^2 O(kn2)。

三、k-Center Clustering

将任意点到聚类中心的最大距离称为聚类的半径。存在半径为r的k聚类当且仅当存在k个半径为r的球体将所有的点覆盖。下面,我们给出一个简单的算法来寻找k个球覆盖所有点。
The Farthest Traversal k-clustering Algorithm

  1. 任意选择一个点作为第一个聚类中心;
  2. t = 2 , 3 , ⋯   , k t=2,3,\cdots,k t=2,3,,k,选择距离当前聚类中心最远的点,作为第 t t t个聚类中心。

该算法相当于初始化Lloyd算法的最远遍历策略。下面的引理表明该算法仅需要使用最多为最佳k-center解的两倍的半径。
Theorem 7.3 如果存在半径为 r 2 \frac{r}{2} 2r k k k聚类,那么上面的算法找到的 k k k聚类的半径至多为 r r r
证明:若不然,即存在数据点 x x x,它距离所有中心 > r >r >r ⇒ \Rightarrow 每次产生的新中心距离当前中心 > r >r >r (否则它就不是距离当前中心最远的点,因为 x x x距离当前中心 > r >r >r )。从而, k k k个中心加上一个数据点 x x x,共有 k + 1 k+1 k+1个数据点,它们的距离成对的比 r r r更大。但在半径为 r 2 \frac{r}{2} 2r k k k聚类中,没有两个这样的点可以属于同一簇,矛盾。

四、Spectral Clustering(谱聚类)

Spectral Clustering 其实就是通过 Laplacian Eigenmap 的降维方式降维之后再做 K-means 的一个过程。
谱聚类遵循以下步骤:

  • 寻找由A的前k个右奇异向量生成的空间V
  • 将数据点投影到V上
  • 对投影点聚类

1、为什么要投影?

投影会使数据点更接近其聚类中心。
在这里插入图片描述
令数据矩阵 A A A的第 i i i行表示第 i i i个数据点,C的第 i i i行表示第 i i i个数据点属于的中心点。(对于 k k k聚类问题有且仅有 k k k个不同行)那么,数据点到其聚类中心的距离平方和为
∑ i = 1 n ∣ a i − c i ∣ 2 = ∥ A − C ∥ F 2 \sum_{i=1}^{n}\left|\mathbf{a}_{\mathbf{i}}-\mathbf{c _ { i }}\right|^{2}=\|A-C\|_{F}^{2} i=1naici2=ACF2
通过聚类能够将到聚类中心的距离平方和由 ∥ A − C ∥ F 2 \|A-C\|_{F}^{2} ACF2减小到投影中的8 k ∥ A − C ∥ 2 2 k\|A-C\|_{2}^{2} kAC22.。
Theorem 7.4 对任意秩小于等于k的矩阵 C C C,有
∥ A k − C ∥ F 2 ≤ 8 k ∥ A − C ∥ 2 2 \left\|A_{k}-C\right\|_{F}^{2} \leq 8 k\|A-C\|_{2}^{2} AkCF28kAC22
证明 r a n k ( A k − C ) ≤ r a n k ( A k ) + r a n k ( C ) ≤ k + k = 2 k rank(A_k-C)\le rank(A_k) + rank(C)\le k+k=2k rank(AkC)rank(Ak)+rank(C)k+k=2k
由于 ∥ A ∥ 2 2 ≤ ∥ A ∥ F 2 ≤ k ∥ A ∥ 2 2 \|A\|_{2}^{2} \leq\|A\|_{F}^{2} \leq k\|A\|_{2}^{2} A22AF2kA22,所以
∥ A k − C ∥ F 2 ≤ 2 k ∥ A k − C ∥ 2 2 \left\|A_{k}-C\right\|_{F}^{2} \leq 2 k\left\|A_{k}-C\right\|_{2}^{2} AkCF22kAkC22

∥ A k − C ∥ 2 ≤ ∥ A k − A ∥ 2 + ∥ A − C ∥ 2 ≤ 2 ∥ A − C ∥ 2 \left\|A_{k}-C\right\|_{2} \leq\left\|A_{k}-A\right\|_{2}+\|A-C\|_{2} \leq 2\|A-C\|_{2} AkC2AkA2+AC22AC2
得证。

2、算法

定义 σ ( C ) = ∥ A − C ∥ 2 / n \sigma(C)=\|A-C\|_{2} / \sqrt{n} σ(C)=AC2/n
Spectral Clustering - The Algorithm

  • 寻找A的前k个奇异值向量,然后将A的列投影到由这向量生成的空间上,得到 A k A_k Ak
  • A k A_k Ak中选择一行进行聚类,使得 A k A_k Ak的所有行与该行的距离都小于 6 k σ ( C ) / ε 6k \sigma(C) / \varepsilon 6kσ(C)/ε
  • 重复Step 2 k k k次。

Theorem 7.5 如果在 k k k聚类 C C C中,每对中心间隔至少15 k σ ( C ) / ε k \sigma(C) / \varepsilon kσ(C)/ε,并且每一类中至少有 ε n \varepsilon n εn个点,则以至少 1 − ε 1-\varepsilon 1ε的概率,谱聚类找到的聚类 C ′ C' C C C C至多有 ε 2 n \varepsilon^{2} n ε2n个点不同。
证明:首先证明对大多数的数据点,数据点的投影与其聚类中心的距离在 3 k σ ( C ) / ε 3k \sigma(C) / \varepsilon 3kσ(C)/ε以内。令
M = { i : ∣ v i − c i ∣ ≥ 3 k σ ( C ) / ε } M=\left\{i :\left|\mathbf{v}_{\mathrm{i}}-\mathbf{c}_{\mathrm{i}}\right| \geq 3 k \sigma(C) / \varepsilon\right\} M={i:vici3kσ(C)/ε}
其中 v i \mathbf{v}_i vi表示 A k A_k Ak的第 i i i行。下面证明 ∣ M ∣ |M| M是小的。
由于 ∥ A k − C ∥ F 2 = ∑ i ∣ v i − c i ∣ 2 ≥ ∑ i ∈ M ∣ v i − c i ∣ 2 ≥ ∣ M ∣ 9 k 2 σ 2 ( C ) ε 2 \left\|A_{k}-C\right\|_{F}^{2}=\sum_{i}\left|\mathrm{v}_{\mathrm{i}}-\mathrm{c}_{\mathrm{i}}\right|^{2} \geq \sum_{i \in M}\left|\mathrm{v}_{\mathrm{i}}-\mathrm{c}_{\mathrm{i}}\right|^{2} \geq|M| \frac{9 k^{2} \sigma^{2}(C)}{\varepsilon^{2}} AkCF2=ivici2iMvici2Mε29k2σ2(C),所以,由定理7.4,有
∣ M ∣ 9 k 2 σ 2 ( C ) ε 2 ≤ ∥ A k − C ∥ F 2 ≤ 8 k n σ 2 ( C ) ⟹ ∣ M ∣ ≤ 8 ε 2 n 9 k |M| \frac{9 k^{2} \sigma^{2}(C)}{\varepsilon^{2}} \leq\left\|A_{k}-C\right\|_{F}^{2} \leq 8 k n \sigma^{2}(C) \quad \Longrightarrow \quad|M| \leq \frac{8 \varepsilon^{2} n}{9 k} Mε29k2σ2(C)AkCF28knσ2(C)M9k8ε2n
如果 i ∉ M i \notin M i/M,称数据点 i i i是好的。对于属于同一簇的两个好点 i i i j j j,由于它们的投影与中心距离在 3 k σ ( C ) / ε 3k \sigma(C) / \varepsilon 3kσ(C)/ε以内,所以两个点的投影距离在 6 k σ ( C ) / ε 6k \sigma(C) / \varepsilon 6kσ(C)/ε以内。另一方面,对于属于不同簇的两个好点 i i i k k k,由于两个簇的中心间隔至少15 k σ ( C ) / ε k \sigma(C) / \varepsilon kσ(C)/ε,所以两个点的投影距离一定比 15 k σ ( C ) / ε − 6 k σ ( C ) / ε = 9 k σ ( C ) / ε 15 k \sigma(C) / \varepsilon-6 k \sigma(C) / \varepsilon=9 k \sigma(C) / \varepsilon 15kσ(C)/ε6kσ(C)/ε=9kσ(C)/ε大。因此,如果我们在Step 2中选择了一个好点(如点 i i i),那么我们算法放置在它的簇中的好点就确为与 i i i在同一簇中的好点。因此,如果在Step 2的第k次执行中,我们选择了一个好点,那么所有好点都被正确聚类。又由于 ∣ M ∣ ≤ ε 2 n |M| \leq \varepsilon^{2} n Mε2n,定理即成立。
为了完成证明,,我们还需说明Step 2中选择坏点的可能性很小。有上面证明,可知每一类中好点的个数至少 ( ε − ε 2 ) n (\varepsilon-\varepsilon^2)n (εε2)n。因此,从每一类中挑出好点的概率至少为 ( ε − ε 2 ) n / ( ε n ) = 1 − ε (\varepsilon-\varepsilon^2)n/(\varepsilon n)=1-\varepsilon (εε2)n/(εn)=1ε

3、由 Ω ( 1 ) \Omega(1) Ω(1)标准差分离的均值

对于实线上的概率分布,“由 6 6 6标准差分离的均值”足够区分不同的分布。如果 k ∈ O ( 1 ) k \in O(1) kO(1)并且 6 6 6被一些常数代替,则谱聚类能够使我们在更高维度上做同样的事。首先定义标准偏差为数据点到聚类中心的平方均值在所有单位方向 v \mathrm{v} v上的最大值,即
σ ( C ) 2 = 1 n max ⁡ ∣ v ∣ = 1 ∑ i = 1 n [ ( a i − c i ) ⋅ v ] 2 = 1 n max ⁡ ∣ v ∣ = 1 ∣ ( A − C ) v ∣ 2 = 1 n ∥ A − C ∥ 2 2 \sigma(C)^{2}=\frac{1}{n} \max\limits_{|\mathbf{v}|=1} \sum_{i=1}^{n}\left[\left(\mathbf{a}_{\mathbf{i}}-\mathbf{c}_{\mathbf{i}}\right) \cdot \mathbf{v}\right]^{2}=\frac{1}{n} \max\limits_{|\mathbf{v}|=1}|(A-C) \mathbf{v}|^{2}=\frac{1}{n}\|A-C\|_{2}^{2} σ(C)2=n1v=1maxi=1n[(aici)v]2=n1v=1max(AC)v2=n1AC22
这也与我们之前对 σ ( C ) \sigma(C) σ(C)的定义相同。
现在,很容易看出Theorem 7.5可以重新表述(假设 k ∈ O ( 1 ) k \in O(1) kO(1))为

  • 如果 C C C中的聚类中心可以由 Ω ( σ ( C ) ) \Omega(\sigma(C)) Ω(σ(C))分离,那么谱聚类算法找到的聚类 C ′ C' C C C C只有很小一部分数据点不同。

可以看出,对于许多随机模型,“均值由 Ω ( 1 ) \Omega(1) Ω(1)标准差分离”条件成立。在这里用两个例子说明。

首先,假设我们有 k ∈ O ( 1 ) k \in O(1) kO(1)个球面高斯的混合,其标准差均为1。数据由这个混合产生。如果高斯的均值是 Ω ( 1 ) \Omega(1) Ω(1)分离的,那么条件“均值由 Ω ( 1 ) \Omega(1) Ω(1)标准差分离”是满足的,因此当我们投影到SVD子空间并聚类,我们将得到(接近)正确的聚类。

我们再讨论第二个例子。随机块模型是关于社区的模型。假设再 n n n个人中有 k k k个社区 C 1 , C 2 , … , C k C_{1}, C_{2}, \ldots, C_{k} C1,C2,,Ck。假设两个人在同一社区认识对方的概率为 p p p,在不同社区认识对方的概率为 q q q,其中, q &lt; p q&lt;p q<p。假设事件人 i i i认识人 j j j是互相独立的。具体地,我们给出 n × n n\times n n×n数据矩阵,其中 a i j = 1 a_{ij}=1 aij=1当且仅当 i i i j j j彼此认识。可以将A视为图的邻接矩阵。在实际中,图形相当稀疏,即 p p p q q q很小,即 O ( 1 / n ) O(1 / n) O(1/n) or O ( ln ⁡ n / n ) O(\ln n / n) O(lnn/n)
考虑简单情形:两个社区各有 n / 2 n/2 n/2个人,且 p = α n q = β n p=\frac{\alpha}{n} \quad q=\frac{\beta}{n} \quad p=nαq=nβ ,其中 α , β ∈ O ( ln ⁡ n ) \alpha, \beta \in O(\ln n) α,βO(lnn)。令 u \mathbf{u} u v \mathbf{v} v分别为社区一和二的数据点的质心,所以 u i ≈ p u_{i} \approx p uip for i ∈ C 1 i \in C_{1} iC1 u j ≈ q u_{j} \approx q ujq for j ∈ C 2 j \in C_{2} jC2 并且 v i ≈ q v_{i} \approx q viq for i ∈ C 1 i \in C_{1} iC1 v j ≈ p v_{j} \approx p vjp for j ∈ C 2 j \in C_{2} jC2。我们有
∣ u − v ∣ 2 = ∑ j = 1 n ( u j − v j ) 2 ≈ ( α − β ) 2 n 2 n = ( α − β ) 2 n |\mathbf{u}-\mathbf{v}|^{2}=\sum_{j=1}^{n}\left(u_{j}-v_{j}\right)^{2} \approx \frac{(\alpha-\beta)^{2}}{n^{2}} n=\frac{(\alpha-\beta)^{2}}{n} uv2=j=1n(ujvj)2n2(αβ)2n=n(αβ)2
I n t e r − c e n t r o i d d i s t a n c e ≈ α − β n Inter-centroid distance\approx \frac{\alpha-\beta}{\sqrt{n}} Intercentroiddistancen αβ
我们要求 ∥ A − C ∥ 2 \|A-C\|_{2} AC2的上界。这是非平凡的,因为我们必须对所有单位向量 v \mathbf{v} v证明一个统一的上界。随机矩阵(RMT)理论已经为我们做了这个。RMT告诉我们 ∥ A − C ∥ 2 ≤ O ∗ ( n p ) = O ∗ ( α ) \|A-C\|_{2} \leq O^{*}(\sqrt{n p})=O^{*}(\sqrt{\alpha}) AC2O(np )=O(α )
因此,只要 α − β ∈ Ω ∗ ( α ) \alpha-\beta \in \Omega^{*}(\sqrt{\alpha}) αβΩ(α ),我们有 Ω ( 1 ) \Omega(1) Ω(1)标准差分离的均值,从而谱聚类工作。

4、拉普拉斯算子

谱聚类的一个重要特例是当 k = 2 k=2 k=2时。如果我们一个算法将数据分成两部分,这可以递归的应用。一种使用该谱算法的情形是应用在图的拉普拉斯矩阵L上,其被定义为
L = D − A L=D-A L=DA
其中 A A A是邻接矩阵, D D D是自由度的对角矩阵。我们令 A A A为负号。
对任意向量 x x x,我们有
x T L x = ∑ i d i i x i 2 − ∑ ( i , j ) ∈ E x i x j = 1 2 ∑ ( i , j ) ∈ E ( x i − x j ) 2 \mathbf{x}^{T} L \mathbf{x}=\sum_{i} d_{i i} x_{i}^{2}-\sum_{(i, j) \in E} x_{i} x_{j}=\frac{1}{2} \sum_{(i, j) \in E}\left(x_{i}-x_{j}\right)^{2} xTLx=idiixi2(i,j)Exixj=21(i,j)E(xixj)2
由于 L L L的所有行和为0,因此其最小特征值为0,对应的特征向量为 1 \mathbf{1} 1。所有数据点对此向量的投影点仅仅是原点,因此不能提供任何信息。如果我们采用第二低的奇异向量并进行投影,我们得到非常简单的将 n n n个实数进行聚类的问题。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值