- 信息论基础(熵 联合熵 条件熵 信息增益 基尼不纯度)
l 熵:对随机事件的信息量求期望,得熵的定义:
H(X) = -Σp(x)lnp(x)
l 联合熵:两个随机变量X,Y的恋歌分布,可以形成联合熵(Joint Entropy),用H(X, Y)表示。
即:H(X, Y) = -Σp(x, y) lnp(x, y)
H(X, Y) - H(Y) 表示(X, Y)发生所包含的熵,减去Y单独发生包含的熵:在Y发生的前提下,X发生新带来的熵。
l 条件熵:X给定条件下Y的条件分布的熵对X的数学期望,在机器学习中为选定某个特征后的熵,公式如下:
一个特征对应着多个类别Y,因此在此的多个分类即为X的取值x。
l 信息增益:信息增益在决策树算法中是用来选择特征的指标,信息增益越大,则这个特征的选择性越好,在概率中定义为:待分类的集合的熵和选定某个特征的条件熵之差(这里只的是经验熵或经验条件熵,由于真正的熵并不知道,是根据样本计算出来的),公式如下:
l 基尼不纯度:将来自集合中的某种结果随机应用于集合中某一数据项的预期误差率。维基上的公式是这样:
2. 决策树的不同分类算法(ID3算法、C4.5、CART分类树)的原理及应用场景
l ID3:ID3由Ross Quinlan在1986年提出。ID3决策树可以有多个分支,但是不能处理特征值为连续的情况。决策树是一种贪心算法,每次选取的分割数据的特征都是当前的最佳选择,并不关心是否达到最优。在ID3中,每次根据“最大信息熵增益”选取当前最佳的特征来分割数据,并按照该特征的所有取值来切分,也就是说如果一个特征有4种取值,数据将被切分4份,一旦按某特征切分后,该特征在之后的算法执行中,将不再起作用,所以有观点认为这种切分方式过于迅速。ID3算法十分简单,核心是根据“最大信息熵增益”原则选择划分当前数据集的最好特征,信息熵是信息论里面的概念,是信息的度量方式,不确定度越大或者说越混乱,熵就越大。在建立决策树的过程中,根据特征属性划分数据,使得原本“混乱”的数据的熵(混乱度)减少,按照不同特征划分数据熵减少的程度会不一样。在ID3中选择熵减少程度最大的特征来划分数据(贪心),也就是“最大信息熵增益”原则。下面是计算公式,建议看链接计算信息上增益的实例。
l C4.5:C4.5是Ross Quinlan在1993年在ID3的基础上改进而提出的。.ID3采用的信息增益度量存在一个缺点,它一般会优先选择有较多属性值的Feature,因为属性值多的Feature会有相对较大的信息增益?(信息增益反映的给定一个条件以后不确定性减少的程度,必然是分得越细的数据集确定性更高,也就是条件熵越小,信息增益越大).为了避免这个不足C4.5中是用信息增益比率(gain ratio)来作为选择分支的准则。信息增益比率通过引入一个被称作分裂信息(Split information)的项来惩罚取值较多的Feature。除此之外,C4.5还弥补了ID3中不能处理特征属性值连续的问题。
| CART分类树:CART(Classification and Regression tree)分类回归树由L.Breiman,J.Friedman,R.Olshen和C.Stone于1984年提出。ID3中根据属性值分割数据,之后该特征不会再起作用,这种快速切割的方式会影响算法的准确率。CART是一棵二叉树,采用二元切分法,每次把数据切成两份,分别进入左子树、右子树。而且每个非叶子节点都有两个孩子,所以CART的叶子节点比非叶子多1。相比ID3和C4.5,CART应用要多一些,既可以用于分类也可以用于回归。CART分类时,使用基尼指数(Gini)来选择最好的数据分割的特征,gini描述的是纯度,与信息熵的含义相似。CART中每一次迭代都会降低GINI系数。下图显示信息熵增益的一半,Gini指数,分类误差率三种评价指标非常接近。回归时使用均方差作为loss function。基尼系数的计算与信息熵增益的方式非常类似,公式如下:
应用场景:提到决策树算法,很多想到的就是上面提到的ID3、C4.5、CART分类决策树。其实决策树分为分类树和回归树,前者用于分类,如晴天/阴天/雨天、用户性别、邮件是否是垃圾邮件,后者用于预测实数值,如明天的温度、用户的年龄等。
作为对比,先说分类树,我们知道ID3、C4.5分类树在每次分枝时,是穷举每一个特征属性的每一个阈值,找到使得按照feature<=阈值,和feature>阈值分成的两个分枝的熵最大的feature和阈值。按照该标准分枝得到两个新节点,用同样方法继续分枝直到所有人都被分入性别唯一的叶子节点,或达到预设的终止条件,若最终叶子节点中的性别不唯一,则以多数人的性别作为该叶子节点的性别。
回归树总体流程也是类似,不过在每个节点(不一定是叶子节点)都会得一个预测值,以年龄为例,该预测值等于属于这个节点的所有人年龄的平均值。分枝时穷举每一个feature的每个阈值找最好的分割点,但衡量最好的标准不再是最大熵,而是最小化均方差–即(每个人的年龄-预测年龄)^2 的总和 / N,或者说是每个人的预测误差平方和 除以 N。这很好理解,被预测出错的人数越多,错的越离谱,均方差就越大,通过最小化均方差能够找到最靠谱的分枝依据。分枝直到每个叶子节点上人的年龄都唯一(这太难了)或者达到预设的终止条件(如叶子个数上限),若最终叶子节点上人的年龄不唯一,则以该节点上所有人的平均年龄做为该叶子节点的预测年龄。
- 回归树原理
一个回归树对应这输入空间(即特征空间)的一个划分以及在划分单元上的输出值。分类树中,我们采用信息论的方法,通过计算选择最佳划分点。而在回归树中,采用的是启发式的方法。假如我们有n个特征,每个特征有s_i(i\in(1,n))个取值,那我们遍历所有特征,尝试该特征所有取值,对空间进行划分,直到取到特征j的取值s,使得损失函数最小(回归树的损失函数用平方差),这样就得到了一个划分点。公式如图:一个回归树对应这输入空间(即特征空间)的一个划分以及在划分单元上的输出值。分类树中,我们采用信息论的方法,通过计算选择最佳划分点。而在回归树中,采用的是启发式的方法。假如我们有n个特征,每个特征有s_i(i\in(1,n))个取值,那我们遍历所有特征,尝试该特征所有取值,对空间进行划分,直到取到特征j的取值s,使得损失函数最小(回归树的损失函数用平方差),这样就得到了一个划分点。公式如图:
假设将输入空间划分为M个单元:R_1,R_2,…,R_m,那么每个区域的输出值就是:c_m = ave(y_i|x_i\in R_m),也就是该区域内所有点y值的平均数。
举个例子。如下图所示,假如我们想要对楼内居民的年龄进行回归,将楼划分为3个区域R_1,R_2,R_3(红线),那么R_1的输出就是第一列四个居民年龄的平均值,R_2的输出就是第二列四个居民年龄的平均值,R_3的输出就是第三、四列八个居民年龄的平均值。 - 决策树防止过拟合手段
一.什么是过度拟合数据?
过度拟合(overfitting)的标准定义:给定一个假设空间H,一个假设h属于H,如果存在其他的假设h’属于H,使得在训练样例上h的错误率比h’小,但在整个实例分布上h’比h的错误率小,那么就说假设h过度拟合训练数据.
overfittingt是这样一种现象:一个假设在训练数据上能够获得比其他假设更好的拟合,但是在训练数据外的数据集上却不能很好的拟合数据.此时我们就叫这个假设出现了overfitting的现象.
二.产生过度拟合数据问题的原因有哪些?
原因1:样本问题
(1)样本里的噪音数据干扰过大,大到模型过分记住了噪音特征,反而忽略了真实的输入输出间的关系;(什么是噪音数据?)
(2)样本抽取错误,包括(但不限于)样本数量太少,抽样方法错误,抽样时没有足够正确考虑业务场景或业务特点,等等导致抽出的样本数据不能有效足够代表业务逻辑或业务场景;
(3)建模时使用了样本中太多无关的输入变量。
原因2:构建决策树的方法问题
在决策树模型搭建中,我们使用的算法对于决策树的生长没有合理的限制和修剪的话,决策树的自由生长有可能每片叶子里只包含单纯的事件数据或非事件数据,可以想象,这种决策树当然可以完美匹配(拟合)训练数据,但是一旦应用到新的业务真实数据时,效果是一塌糊涂。
上面的原因都是现象,但是其本质只有一个,那就是“业务逻辑理解错误造成的”,无论是抽样,还是噪音,还是决策树等等,如果我们对于业务背景和业务知识非常了解,非常透彻的话,一定是可以避免绝大多数过拟合现象产生的。因为在模型从确定需求,到思路讨论,到搭建,到业务应用验证,各个环节都是可以用业务敏感来防止过拟合于未然的。
三.如何解决过度拟合数据问题的发生?
针对原因1的解决方法:
合理、有效地抽样,用相对能够反映业务逻辑的训练集去产生决策树;针对原因2的解决方法(主要):
剪枝:提前停止树的增长或者对已经生成的树按照一定的规则进行后剪枝。
剪枝的方法 剪枝是一个简化过拟合决策树的过程。有两种常用的剪枝方法:
(1)先剪枝(prepruning):通过提前停止树的构建而对树“剪枝”,一旦停止,节点就成为树叶。该树叶可以持有子集元组中最频繁的类;先剪枝的方法 有多种不同的方式可以让决策树停止生长,下面介绍几种停止决策树生长的方法:
限制决策树的高度和叶子结点处样本的数目
①.定义一个高度,当决策树达到该高度时就可以停止决策树的生长,这是一种最为简单的方法;
②.达到某个结点的实例具有相同的特征向量,即使这些实例不属于同一类,也可以停止决策树的生长。这种方法对于处理数据中的数据冲突问题非常有效;
③.定义一个阈值,当达到某个结点的实例个数小于该阈值时就可以停止决策树的生长;
④.定义一个阈值,通过计算每次扩张对系统性能的增益,并比较增益值与该阈值的大小来决定是否停止决策树的生长。
(2)后剪枝(postpruning):它首先构造完整的决策树,允许树过度拟合训练数据,然后对那些置信度不够的结点子树用叶子结点来代替,该叶子的类标号用该结点子树中最频繁的类标记。后剪枝的剪枝过程是删除一些子树,然后用其叶子节点代替,这个叶子节点所标识的类别通过大多数原则(majority class criterion)确定。所谓大多数原则,是指剪枝过程中, 将一些子树删除而用叶节点代替,这个叶节点所标识的类别用这棵子树中大多数训练样本所属的类别来标识,所标识的类称为majority class .相比于先剪枝,这种方法更常用,正是因为在先剪枝方法中精确地估计何时停止树增长很困难。
后剪枝的方法
1)REP方法是一种比较简单的后剪枝的方法,在该方法中,可用的数据被分成两个样例集合:一个训练集用来形成学习到的决策树,一个分离的验证集用来评估这个决策树在后续数据上的精度,确切地说是用来评估修剪这个决策树的影响。这个方法的动机是:即使学习器可能会被训练集中的随机错误和巧合规律所误导,但验证集合不大可能表现出同样的随机波动。所以验证集可以用来对过度拟合训练集中的虚假特征提供防护检验。
该剪枝方法考虑将书上的每个节点作为修剪的候选对象,决定是否修剪这个结点有如下步骤组成:
1:删除以此结点为根的子树
2:使其成为叶子结点
3:赋予该结点关联的训练数据的最常见分类
4:当修剪后的树对于验证集合的性能不会比原来的树差时,才真正删除该结点
因为训练集合的过拟合,使得验证集合数据能够对其进行修正,反复进行上面的操作,从底向上的处理结点,删除那些能够最大限度的提高验证集合的精度的结点,直到进一步修剪有害为止(有害是指修剪会减低验证集合的精度)。
REP是最简单的后剪枝方法之一,不过由于使用独立的测试集,原始决策树相比,修改后的决策树可能偏向于过度修剪。这是因为一些不会再测试集中出现的很稀少的训练集实例所对应的分枝在剪枝过如果训练集较小,通常不考虑采用REP算法。
尽管REP有这个缺点,不过REP仍然作为一种基准来评价其它剪枝算法的性能。它对于两阶段决策树学习方法的优点和缺点提供了了一个很好的学习思路。由于验证集合没有参与决策树的创建,所以用REP剪枝后的决策树对于测试样例的偏差要好很多,能够解决一定程度的过拟合问题。
2)PEP,悲观错误剪枝,悲观错误剪枝法是根据剪枝前后的错误率来判定子树的修剪。该方法引入了统计学上连续修正的概念弥补REP中的缺陷,在评价子树的训练错误公式中添加了一个常数,假定每个叶子结点都自动对实例的某个部分进行错误的分类。它不需要像REP(错误率降低修剪)样,需要用部分样本作为测试数据,而是完全使用训练数据来生成决策树,又用这些训练数据来完成剪枝。决策树生成和剪枝都使用训练集, 所以会产生错分。
把一棵子树(具有多个叶子节点)的分类用一个叶子节点来替代的话,在训练集上的误判率肯定是上升的,但是在测试数据上不一定,我们需要把子树的误判计算加上一个经验性的惩罚因子,用于估计它在测试数据上的误判率。对于一棵叶子节点,它覆盖了N个样本,其中有E个错误,那么该叶子节点的错误率为(E+0.5)/N。这个0.5就是惩罚因子,那么对于该棵子树,假设它有L个叶子节点,则该子树的误判率估计为:
剪枝后该子树内部节点变成了叶子节点,该叶子结点的误判个数J同样也需要加上一个惩罚因子,变成J+0.5。那么子树是否可以被剪枝就取决于剪枝后的错误J+0.5在
的标准误差内。对于样本的误差率e,我们可以根据经验把它估计成伯努利分布,那么可以估计出该子树的误判次数均值和标准差
使用训练数据,子树总是比替换为一个叶节点后产生的误差小,但是使用校正的误差计算方法却并非如此。剪枝的条件:当子树的误判个数大过对应叶节点的误判个数一个标准差之后,就决定剪枝:
这个条件就是剪枝的标准。当然并不一定非要大一个标准差,可以给定任意的置信区间,我们设定一定的显著性因子,就可以估算出误判次数的上下界。 - 模型评估
自助法(bootstrap):
训练集是对于原数据集的有放回抽样,如果原始数据集N,可以证明,大小为N的自助样本大约包含原数据63.2%的记录。当N充分大的时候,1-(1-1/N)^(N) 概率逼近 1-e^(-1)=0.632。抽样 b 次,产生 b 个bootstrap样本,则,总准确率为(accs为包含所有样本计算的准确率):
准确度的区间估计:将分类问题看做二项分布,则有:
令 X 为模型正确分类,p 为准确率,X 服从均值 Np、方差 Np(1-p)的二项分布。acc=X/N为均值 p,方差 p(1-p)/N 的二项分布。acc 的置信区间:
- sklearn参数详解,Python绘制决策树sklearn.tree.DecisionTreeClassifier (criterion=‘gini’, splitter=‘best’, max_depth=None, min_samples_split=2, min_samples_leaf=1,min_weight_fraction_leaf=0.0, max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, class_weight=None, presort=False)
criterion:特征选择的标准,有信息增益和基尼系数两种,使用信息增益的是ID3和C4.5算法(使用信息增益比),使用基尼系数的CART算法,默认是gini系数。
splitter:特征切分点选择标准,决策树是递归地选择最优切分点,spliter是用来指明在哪个集合上来递归,有“best”和“random”两种参数可以选择,best表示在所有特征上递归,适用于数据集较小的时候,random表示随机选择一部分特征进行递归,适用于数据集较大的时候。
max_depth:决策树最大深度,决策树模型先对所有数据集进行切分,再在子数据集上继续循环这个切分过程,max_depth可以理解成用来限制这个循环次数。
min_samples_split:子数据集再切分需要的最小样本量,默认是2,如果子数据样本量小于2时,则不再进行下一步切分。如果数据量较小,使用默认值就可,如果数据量较大,为降低计算量,应该把这个值增大,即限制子数据集的切分次数。
min_samples_leaf:叶节点(子数据集)最小样本数,如果子数据集中的样本数小于这个值,那么该叶节点和其兄弟节点都会被剪枝(去掉),该值默认为1。
min_weight_fraction_leaf:在叶节点处的所有输入样本权重总和的最小加权分数,如果不输入则表示所有的叶节点的权重是一致的。
max_features:特征切分时考虑的最大特征数量,默认是对所有特征进行切分,也可以传入int类型的值,表示具体的特征个数;也可以是浮点数,则表示特征个数的百分比;还可以是sqrt,表示总特征数的平方根;也可以是log2,表示总特征数的log个特征。
random_state:随机种子的设置,与LR中参数一致。
max_leaf_nodes:最大叶节点个数,即数据集切分成子数据集的最大个数。
min_impurity_decrease:切分点不纯度最小减少程度,如果某个结点的不纯度减少小于这个值,那么该切分点就会被移除。
min_impurity_split:切分点最小不纯度,用来限制数据集的继续切分(决策树的生成),如果某个节点的不纯度(可以理解为分类错误率)小于这个阈值,那么该点的数据将不再进行切分。
class_weight:权重设置,主要是用于处理不平衡样本,与LR模型中的参数一致,可以自定义类别权重,也可以直接使用balanced参数值进行不平衡样本处理。
presort:是否进行预排序,默认是False,所谓预排序就是提前对特征进行排序,我们知道,决策树分割数据集的依据是,优先按照信息增益/基尼系数大的特征来进行分割的,涉及的大小就需要比较,如果不进行预排序,则会在每次分割的时候需要重新把所有特征进行计算比较一次,如果进行了预排序以后,则每次分割的时候,只需要拿排名靠前的特征就可以了。
对象/属性
classes_:分类模型的类别,以字典的形式输出clf.classes_---------------array([0, 1, 2])#表示0,1,2类别
feature_importances_:特征重要性,以列表的形式输出每个特征的重要性
max_features_:最大特征数
n_classes_:类别数,与classes_对应,classes_输出具体的类别
n_features_:特征数,当数据量小时,一般max_features和n_features_相等
n_outputs_:输出结果数
tree_:输出整个决策树,用于生成决策树的可视化clf.tree_---------<sklearn.tree._tree.Tree at 0x241c20e5d30>方法
decision_path(X):返回X的决策路径
fit(X, y):在数据集(X,y)上使用决策树模型
get_params([deep]):获取模型的参数
predict(X):预测数据值X的标签
predict_log_proba(X):返回每个类别的概率值的对数
predict_proba(X):返回每个类别的概率值(有几类就返回几列值)
score(X,y):返回给定测试集和对应标签的平均准确率
#用决策树建模
import sklearn.tree as tree
clf=tree.DecisionTreeRegressor(min_samples_split=50,max_leaf_nodes=15)clf_fit=clf.fit(x,y)tree.export_graphviz(clf_fit,out_file=“tree.dot” )import pydotplus
from IPython.display import Image dot_data = tree.export_graphviz(clf_fit, out_file=None,
feature_names=feature_names,
class_names=target_names,
filled=True, rounded=True,
special_characters=True)
graph = pydotplus.graph_from_dot_data(dot_data)
Image(graph.create_png())