零钱兑换II
题目描述
给定不同面额的硬币和一个总金额。写出函数来计算可以凑成总金额的硬币组合数。假设每一种面额的硬币有无限个。
示例 1:
输入: amount = 5, coins = [1, 2, 5]
输出: 4
解释: 有四种方式可以凑成总金额:
5=5
5=2+2+1
5=2+1+1+1
5=1+1+1+1+1
示例 2:
输入: amount = 3, coins = [2]
输出: 0
解释: 只用面额2的硬币不能凑成总金额3。
示例 3:
输入: amount = 10, coins = [10]
输出: 1
注意:
你可以假设:
0 <= amount (总金额) <= 5000
1 <= coin (硬币面额) <= 5000
硬币种类不超过 500 种
结果符合 32 位符号整数
动态规划
class Solution {
public int change(int amount, int[] coins) {
//完全背包问题,用dp记录可以达成的目标的组合数目
//dp[i]表示价值为i的金额可被表示的目标组合数目
int[] dp = new int[amount + 1];
dp[0] = 1;
for (int coin : coins) {
// 记录每添加一种面额的零钱,总金额j的变化
for (int j = 1; j <= amount; j++) {
if (j >= coin) {
// 在上一钟零钱状态的基础上增大
// 例如对于总额5,当只有面额为1的零钱时,只有一种可能 5x1
// 当加了面额为2的零钱时,除了原来的那一种可能外
// 还加上了组合了两块钱的情况,而总额为5是在总额为3的基础上加上两块钱来的
// 所以就加上此时总额为3的所有组合情况
dp[j] = dp[j] + dp[j - coin];
}
}
}
return dp[amount];
}
}
时间复杂度 O(N*amount),空间复杂度 O(amount)。