【LeetCode-518】518.零钱兑换II(动态规划)

零钱兑换II

题目描述

给定不同面额的硬币和一个总金额。写出函数来计算可以凑成总金额的硬币组合数。假设每一种面额的硬币有无限个。

示例 1:

输入: amount = 5, coins = [1, 2, 5]
输出: 4
解释: 有四种方式可以凑成总金额:
5=5
5=2+2+1
5=2+1+1+1
5=1+1+1+1+1
示例 2:

输入: amount = 3, coins = [2]
输出: 0
解释: 只用面额2的硬币不能凑成总金额3。
示例 3:

输入: amount = 10, coins = [10]
输出: 1

注意:

你可以假设:

0 <= amount (总金额) <= 5000
1 <= coin (硬币面额) <= 5000
硬币种类不超过 500 种
结果符合 32 位符号整数

动态规划

class Solution {
    public int change(int amount, int[] coins) {
    
         //完全背包问题,用dp记录可以达成的目标的组合数目
         //dp[i]表示价值为i的金额可被表示的目标组合数目
        int[] dp = new int[amount + 1];
        dp[0] = 1;
        
        for (int coin : coins) {
            // 记录每添加一种面额的零钱,总金额j的变化
            for (int j = 1; j <= amount; j++) {
                if (j >= coin) {
                    // 在上一钟零钱状态的基础上增大
                    // 例如对于总额5,当只有面额为1的零钱时,只有一种可能 5x1
                    // 当加了面额为2的零钱时,除了原来的那一种可能外
                    // 还加上了组合了两块钱的情况,而总额为5是在总额为3的基础上加上两块钱来的
                    // 所以就加上此时总额为3的所有组合情况
                    dp[j] = dp[j] + dp[j - coin];
                }
            }
        }
        return dp[amount];
    }
}

时间复杂度 O(N*amount),空间复杂度 O(amount)。

必看超好的讲解思路

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值