利用 caffe的 python接口测试训练好的 mnist 模型

参考博客:https://blog.csdn.net/auto1993/article/details/70941440
上一篇博客中已经训练好了 mnist 识别手写数字的模型,这篇博客就利用 caffe 的 python 接口对得到的模型进行测试

from PIL import Image
import matplotlib.pyplot as plt
import numpy as np
import caffe
from skimage import io

imgsource = 'F:/python_work/mnist/images/001.png'
img = Image.open(imgsource)
plt.figure("image")
plt.imshow(img)
plt.show()

modefile = 'F:/caffe-master/examples/mnist/lenet.prototxt'
pretrain = 'F:/caffe-master/examples/mnist/lenet_iter_10000.caffemodel'
inputImage = caffe.io.load_image(imgsource,color=False)
net = caffe.Classifier(modefile,pretrain)
prediction = net.predict([inputImage],oversample=False)
caffe.set_mode_gpu()
print'predicted classes:',prediction[0].argmax()


运行结果
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值