G :Generating Texts
题目连接: https://codeforces.com/gym/101845/problem/G
题意:
给你一个长度为m的字符串s,求是长度为n的字符串的子序列的概率。对于长度为n的字符串,给出26个字母分别出现的概率。结果对1e9+7取模。
题解:
其实就是构造出包含s的长度为n的字符串,很明显是动态规划问题。
定义dp[i][j]为当前长度为i时,包含字符串s的前 j 个字母的概率,所以dp[n][m]即为答案。
预处理出各个字母概率取模,状态转移方程为 dp[i][j]=dp[i-1][j-1]*P[s[j]]+dp[i-1][j]*(1-P[s[j+1]),(长度i-1时还不包括j的,加上包括j了但不包括j+1)再取模就可以了,此时注意几个点:
1、减法取模记得加mod再取模,不然可能出现负数。
2、j=0时,j前面没有字母,所以转移方程为 dp[i][j]=dp[i-1][j]*(1-p[s[j+1]])
3、j=k时,j后面没有字母,而且还要加上dp[i-1][j]*1。故转移方程为 dp[i][j]=dp[i-1][j-1]*P[s[j]]+dp[i-1][j]
AC代码:
#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <string>
#include <vector>
#include <string>
#include <cmath>
#include <ctime>
#include <queue>
#include<stack>
#include <map>
#include <set>
#include<fstream>
#define lowbit(x) x&(-x)
using namespace std;
typedef long long ll;
const int mod=1e9+7;
const int N =5005;
ll n, m, p, q;
ll P[30], dp[N][N];
char s[N];
ll qpow(ll a, ll b)
{
ll ans = 1;
while (b) {
if (b & 1)
ans = ans * a%mod;
a = a * a%mod;
b >>= 1;
}
return ans;
}
int main()
{
cin >> n >> m;
scanf("%s",s+1);
for (int i = 0; i < 26; i++) {//预处理概率取模
scanf("%lld%lld",&p,&q);
P[i] = p * qpow(q, mod - 2) % mod;
}
dp[0][0] = 1;
for (int i = 1; i <= n; i++) {
for (int j = 0; j <=m; j++) {
if (j == 0)//注意项第2点
dp[i][j] = dp[i - 1][j] * (1 - P[s[j+1] - 'a'] + mod) % mod;
else if (j == m)//第3点
dp[i][j] = (dp[i - 1][j - 1] * (P[s[j] - 'a'])+dp[i-1][j]) % mod;
else {
dp[i][j] = dp[i - 1][j - 1] * (P[s[j] - 'a']) + dp[i - 1][j] * (1 - P[s[j + 1] - 'a'] + mod);
dp[i][j] %= mod;
}
}
}
printf("%lld\n",dp[n][m]);
return 0;
}