Anaconda 安装特定环境 pytroch,tesnsorflow

Anaconda 安装就跳过了自己安装

1、新建一个环境名称,同时指定需要安装的一些包
新建一个pytorch-gpu 环境,指定python 使用3.6 版本,最后加anaconda就会安装一些常用的包,比如NoteBook,Numpy Scipy、Matplotlib、Pandas等数据分析包,不想装也可以不加,反正这些包还是挺常用的

conda create --name pytorch-gpu python=3.6 anaconda

2、激活当前环境
也就是选择使用某个环境,默认是处于base环境

activate pytorch-gpu

问题:
如果在powershell 执行

conda activate pytorch-gpu 
# 报下面的错
"""
CommandNotFoundError: Your shell has not been properly configured to use 'conda activate'.
If your shell is Bash or a Bourne variant, enable conda for the current user with
"""

这就是shell的环境没配置好,但是在anaconda prompt 可以
解决方案:

Conda版本低于4.6

  • 用Win + X 组合键调出PowerShell 管理员模式;
  • 输入命令conda install -n root -c pscondaenvs pscondaenvs 安装PSCondaEnvs包;
  • 输入命令Set-ExecutionPolicy RemoteSigned 在出现选项后输入Y回车,更改PowerShell 的安全策略。

然后就可以通过activate env-name 激活了, deactivate 退出;一开始会有很多warning,关闭再来就不会有了。

Conda版本高于4.6

  • 用Win + X 组合键调出PowerShell 管理员模式;
  • 输入命令 conda init powershell
  • 关闭当前powershell窗口,重新打开一个powershell窗口输入conda activate 环境名测试。

powershell 打开报错

无法加载文件 C:\Users\solicucu\Documents\WindowsPowerShell\profile.ps1,
# 解决方案
以管理员身份打开 Windows Powershell
执行下面的指令,关掉重新打开即可
get-ExecutionPolicy   # 查看系统执行策略状态
set-executionpolicy remotesigned # 修改执行策略状态

3、换源

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --set show_channel_urls yes
# 查看当前源的信息
conda config --show channels
# 删除某个通道
conda config --remove channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/

4、安装pytroch

#查看主机安装的cuda版本
nvidia-smi #最右栏也可以看当前cuda的版本
cat /usr/local/cuda/version.txt

如果低于9.0 的可以点击这里查找 对应的版本

官网选择安装指令
如果没有gpu,想安装cpu的,那么cuda选择None
在这里插入图片描述
5、输入相应指令

conda install pytorch torchvision cudatoolkit=10.1 -c pytorch

# CUDA 8.0
conda install pytorch==1.0.0 torchvision==0.2.1 cuda80 -c pytorch

这里有个坑

如果conda 换源了的话,不要加-c pytorch,因为这样是指定默认源下载pytorch,依然会很慢的

6、测试一下是否安装成功
输入python 进入python 环境

import torch
import torchvision
print(torch.__version__)

# 查看pytorch安装的cuda版本
print(torch.version.cuda)

# 查看gpu是否可用
print(torch.cuda.is_available())
//pytorch 自动下载的预训练模型一般放在
/home/用户名/.cache/torch/hub/checkpoints

7、退出当前环境

deactivate pytorch-gpu

8、其他常用指令

1、安装某个包的指令
conda install package_name
# 如:conda install numpy=1.10
2、移除某个package
conda remove package_name
3、升级某个package
conda update package_name
4、显示所有package
conda list
5、模糊查询某个package
conda search name-pattern
6、显示所有可用环境
conda env list
7、移除某个环境
conda env remove -n env-name

9. pip 换源
linux 下对pip 换源,这里用的是腾讯源,编辑 vim ~/.pip/pip.conf 文件,改为下面的内容
一般写[global] 这个就行,其实也可以换成其他源,比如清华源

[global]
index-url = http://mirrors.tencentyun.com/pypi/simple
[install]
trusted-host = mirrors.tencentyun.com

换清华源,直接指令:

pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple

10. setuptools 中的setup函数依赖包下载源更换
修改文件 ~/.pydistutils.cfg为下面,其中index_url 可以换成其他你想换成的源,这里是豆瓣

[easy_install]
index_url = http://pypi.douban.com/simple

使用说明;

  • 在跑别人的项目时如果遇到相应module缺失的情况,打开Pytorch Anaconda虚拟环境用conda或pip安装即可解决。(建议优先使用conda,conda会分析依赖包,会将依赖包一同安装)
  • 如果需要使用本虚拟环境在Notebook中跑项目,进入工作目录激活虚拟环境,输入Jupyter Notebook运行即可
  • 如果需要使用本虚拟环境在Pycharm进行项目开发,将设置里的Project Interpreter改为相应Anaconda文件目录下的Pytorch虚拟环境中的python.exe 就行,不知到在哪里可以使用conda env list 查看位置

发现一个很重要的问题,CUDA不是所有显卡都支持的,因为他是英伟达(NVIDIA)开发出来的(compute unified device architecture)统一计算设备架构,通过这个平台来利用GPU的,所以只有下面的系列才可以用
可惜我没有符合的555
CUDA enabled

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值