Anaconda 安装就跳过了自己安装
1、新建一个环境名称,同时指定需要安装的一些包
新建一个pytorch-gpu 环境,指定python 使用3.6 版本,最后加anaconda就会安装一些常用的包,比如NoteBook,Numpy Scipy、Matplotlib、Pandas等数据分析包,不想装也可以不加,反正这些包还是挺常用的
conda create --name pytorch-gpu python=3.6 anaconda
2、激活当前环境
也就是选择使用某个环境,默认是处于base环境
activate pytorch-gpu
问题:
如果在powershell 执行
conda activate pytorch-gpu
# 报下面的错
"""
CommandNotFoundError: Your shell has not been properly configured to use 'conda activate'.
If your shell is Bash or a Bourne variant, enable conda for the current user with
"""
这就是shell的环境没配置好,但是在anaconda prompt 可以
解决方案:
Conda版本低于4.6
- 用Win + X 组合键调出PowerShell 管理员模式;
- 输入命令conda install -n root -c pscondaenvs pscondaenvs 安装PSCondaEnvs包;
- 输入命令Set-ExecutionPolicy RemoteSigned 在出现选项后输入Y回车,更改PowerShell 的安全策略。
然后就可以通过activate env-name 激活了, deactivate 退出;一开始会有很多warning,关闭再来就不会有了。
Conda版本高于4.6
- 用Win + X 组合键调出PowerShell 管理员模式;
- 输入命令 conda init powershell;
- 关闭当前powershell窗口,重新打开一个powershell窗口输入conda activate 环境名测试。
powershell 打开报错
无法加载文件 C:\Users\solicucu\Documents\WindowsPowerShell\profile.ps1,
# 解决方案
以管理员身份打开 Windows Powershell
执行下面的指令,关掉重新打开即可
get-ExecutionPolicy # 查看系统执行策略状态
set-executionpolicy remotesigned # 修改执行策略状态
3、换源
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --set show_channel_urls yes
# 查看当前源的信息
conda config --show channels
# 删除某个通道
conda config --remove channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
4、安装pytroch
#查看主机安装的cuda版本
nvidia-smi #最右栏也可以看当前cuda的版本
cat /usr/local/cuda/version.txt
如果低于9.0 的可以点击这里查找 对应的版本
到官网选择安装指令
如果没有gpu,想安装cpu的,那么cuda选择None
5、输入相应指令
conda install pytorch torchvision cudatoolkit=10.1 -c pytorch
# CUDA 8.0
conda install pytorch==1.0.0 torchvision==0.2.1 cuda80 -c pytorch
这里有个坑
如果conda 换源了的话,不要加-c pytorch,因为这样是指定默认源下载pytorch,依然会很慢的
6、测试一下是否安装成功
输入python 进入python 环境
import torch
import torchvision
print(torch.__version__)
# 查看pytorch安装的cuda版本
print(torch.version.cuda)
# 查看gpu是否可用
print(torch.cuda.is_available())
//pytorch 自动下载的预训练模型一般放在
/home/用户名/.cache/torch/hub/checkpoints
7、退出当前环境
deactivate pytorch-gpu
8、其他常用指令
1、安装某个包的指令
conda install package_name
# 如:conda install numpy=1.10
2、移除某个package
conda remove package_name
3、升级某个package
conda update package_name
4、显示所有package
conda list
5、模糊查询某个package
conda search name-pattern
6、显示所有可用环境
conda env list
7、移除某个环境
conda env remove -n env-name
9. pip 换源
linux 下对pip 换源,这里用的是腾讯源,编辑 vim ~/.pip/pip.conf 文件,改为下面的内容
一般写[global] 这个就行,其实也可以换成其他源,比如清华源
[global]
index-url = http://mirrors.tencentyun.com/pypi/simple
[install]
trusted-host = mirrors.tencentyun.com
换清华源,直接指令:
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple
10. setuptools 中的setup函数依赖包下载源更换
修改文件 ~/.pydistutils.cfg为下面,其中index_url 可以换成其他你想换成的源,这里是豆瓣
[easy_install]
index_url = http://pypi.douban.com/simple
使用说明;
- 在跑别人的项目时如果遇到相应module缺失的情况,打开Pytorch Anaconda虚拟环境用conda或pip安装即可解决。(建议优先使用conda,conda会分析依赖包,会将依赖包一同安装)
- 如果需要使用本虚拟环境在Notebook中跑项目,进入工作目录激活虚拟环境,输入Jupyter Notebook运行即可
- 如果需要使用本虚拟环境在Pycharm进行项目开发,将设置里的Project Interpreter改为相应Anaconda文件目录下的Pytorch虚拟环境中的python.exe 就行,不知到在哪里可以使用conda env list 查看位置
发现一个很重要的问题,CUDA不是所有显卡都支持的,因为他是英伟达(NVIDIA)开发出来的(compute unified device architecture)统一计算设备架构,通过这个平台来利用GPU的,所以只有下面的系列才可以用
可惜我没有符合的555
CUDA enabled