python 实现等声值线图绘制

文章介绍了风电项目中的噪声预测问题,特别是在风机噪声的简化模型处理上,包括NASA模型的应用和修正,以及点声源模型在不同距离下的适用性。作者构建了一个基于风机直径和距离的噪声值计算公式,并展示了等声值线图,尽管未考虑地形影响,但在风电项目中基本适用。
摘要由CSDN通过智能技术生成

今天讲一类环评项目的噪声预测 - 风电

风机噪声作为面源目前难有成熟的模型进行预测。根据国内外的研究,都是根据与风机中心的位置进行分级预测。

翟国庆等利用美国航天航空局(NASA)研发的风电机组噪声预测模型(以下简称 NASA”模型),结合国内风机特点和风机噪声实际测量值对做出的模型修正提出了对 国内的风电机组噪声预测模型,但模型较复杂且需要的参数较多。根据其模型简化与实 测比对研究的结果,当噪声预测点距风电机组较近(水平距离 d≤2 倍风轮半)时, 噪声测量值不能用点声源模型进行较好预测;当噪声测点距离风电机组较远(水距离 d≥2 倍风轮半径)时,下风向噪声预测点的预测结果与实测值拟合系数明显,一般 可达到 0.95 以上,拟合效果较好。国外学者 Makarewicz 也用数学方法证明了预测点 距风电水平距离大于 2 倍叶片长度即 1 倍风轮直径时,风机叶片噪声符合自声场点声 源的特点;谷朝军等的实测研究结果也表明,在下风向 4 倍叶片长度距离,距离每增 加 1 倍风机噪声约衰减 6dB(A),基本满足点声源的传播规律。

将风机噪声贡献简化为以下情况:

风机直径w=120, d 为 预测点与噪声源的距离,m。

LA(d) 为预测点(距离 r)的噪声值,dB(A);

LAW 为噪声源的声功率级,dB(A)赋值109

当d<w/π/2时,LA几乎不变;

当d<w/π>d>w/π/2时 ,LA(d) = LAW-10lgd

当d>w/π时,LA(d) = LAW-20lgd-8

根据以上需求可以使用python 进行脚本编写

import numpy as np
import matplotlib.pyplot as plt

# 设置中心点的坐标和地图范围
center_x = 0
center_y = 0
radius = 500
w = 120  # 风机直径

# 计算网格点的坐标
x = np.linspace(-radius, radius, 1000)
y = np.linspace(-radius, radius, 1000)
X, Y = np.meshgrid(x, y)

# 计算每个点的距离和噪声值
d = np.sqrt(X**2 + Y**2)

LA = np.zeros_like(d)
LA[d < w/(2*np.pi)] = 109
LA[(d > w/(2*np.pi)) & (d < w)] = 109 - 10 * np.log10(d[(d > w/(2*np.pi)) & (d < w)])
LA[d > w] = 109 - 20 * np.log10(d[d > w]) - 8

# 背景噪声值
B = 40

# 叠加背景噪声值
LA_total = 10 * np.log10(10**(0.1*LA) + 10**(0.1*B))

# 绘制等声值线图
plt.figure(figsize=(5, 5), dpi=300)
plt.contourf(X, Y, LA_total, levels=np.arange(40, 111, 10), cmap='RdYlGn_r', alpha=0.5)
plt.colorbar(label='Total Sound Level (dB)')
plt.title('Total Sound Contour Map')
plt.xlabel('X')
plt.ylabel('Y')
plt.show()

得到预测结果图

然后利用ps 叠加卫星图即可出图。

这里有人可能提出,没有考虑地形的影响,可风电项目往往位于山顶,地形的影响相对较弱。
用这样的分析基本是可以的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

细节处有神明

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值