nivdia 接入 deepseek r1 免费调用API

1月30日,英伟达在其NIM平台上架了由DeepSeek开源的DeepSeek R1模型,这标志着开发者们现在能够免费利用这一强大的API快速构建各种应用程序。感谢DeepSeek的开源贡献,让我们得以免费体验如此优秀的模型。

获取英伟达 key

首先,登录英伟达官方网站,进入NIM界面,找到DeepSeek R1项目,并点击右侧的“获取API Key”。页面会提供Python调用方法,方便直接测试和集成。

[deepseek-r1 Model by Deepseek-ai | NVIDIA NIM](https://build.nvidia.com/deepseek-ai/deepseek-r1)

图片

以下是英伟达给的调用接口。

from openai import OpenAI

client = OpenAI(
  base_url = "https://integrate.api.nvidia.com/v1",
  api_key = "$API_KEY_REQUIRED_IF_EXECUTING_OUTSIDE_NGC"
)

completion = client.chat.completions.create(
  model="deepseek-ai/deepseek-r1",
  messages=[{"role":"user","content":"Which number is larger, 9.11 or 9.8?"}],
  temperature=0.6,
  top_p=0.7,
  max_tokens=4096,
  stream=True
)

for chunk in completion:
if chunk.choices[0].delta.content is not None:
    print(chunk.choices[0].delta.content, end="")

使用Chainlit框架构建简单页面

之前曾用 streamlit 构建了 deepseek 对话页面,但是其功能略微粗糙,相较于传统Streamlit框架,我们采用Chainlit 实现更高效、简洁的流式交互体验。Chainlit的异步处理架构完美适配大语言模型的流式响应特性,主要技术优势包括:

  • 实时token级渲染(Token-by-token rendering)

  • WebSocket长连接支持

  • 会话状态管理(Session state management)

  • 多模态输入支持(文本/文件/图像)

今天尝试使用Chainlit框架构建一个简单的交互式页面。新建一个 app.py 文件,并复制以下代码:

# 安装第三方库
# pip install chainlit openai 
import chainlit as cl
from openai import OpenAI 

@cl.on_chat_start
asyncdef start_chat():
    # 初始化客户端(密钥建议通过环境变量管理)
    client = OpenAI(
        base_url="https://integrate.api.nvidia.com/v1",
        api_key=""
    )
    # 将客户端保存到用户会话
    cl.user_session.set("client", client)
@cl.on_message
asyncdef main(message: cl.Message):
    # 获取客户端实例
    client = cl.user_session.get("client")
    # 创建消息对象(支持流式响应)
    msg = cl.Message(content="")
    # 调用NVIDIA API
    completion = client.chat.completions.create(
        model="deepseek-ai/deepseek-r1",
        messages=[
            {"role": "system", "content": "You are a helpful assistant."},
            {"role": "user", "content": message.content}
        ],
        temperature=0.6,
        top_p=0.7,
        max_tokens=4096,
        stream=True
    ) 

    # 流式处理响应
    for chunk in completion:
        if chunk.choices[0].delta.content:
            await msg.stream_token(chunk.choices[0].delta.content)
    # 发送完整响应
    await msg.send()

技术参数说明:

  • 基础接口地址:https://integrate.api.nvidia.com/v1

  • 模型标识符:deepseek-ai/deepseek-r1

  • 最大上下文窗口:4096 tokens

  • 默认推理参数:temperature=0.6,top_p=0.7

在命令行中输入

chainlit run app.py

跳转到 8000 端口,就可以对话了。可以看到的确使用了

图片

完美展现了过程并实现了流式输出。

chainlit 录屏

技术生态影响与行业动态

打不过就加入,随着 deepseek 的开源,国内外大厂都认识到他的价值,同时引发全球技术生态的连锁反应,其核心优势体现在:

技术指标

DeepSeek R1

LLaMA2-13B

Mistral-7B

推理成本($/1M tokens)

0.15

0.45

0.28

训练算力消耗(PF-days)

820

1840

950

代码生成准确率(HumanEval)

68.9%

52.1%

59.3%

了英伟达(NVIDIA)将DeepSeek集成到其NIM平台外,其他行业巨头也迅速跟进:

  • 微软:在Azure AI和GitHub上提供DeepSeek R1模型。

  • AMD:为MI300系列GPU优化了ROCm推理加速方案,显著提升了DeepSeek在高性能计算环境中的表现。

  • 印度数字部:基于DeepSeek架构构建 AI项目,旨在打造符合本国需求的基础模型。

以上说明 deepseek 的确是里程碑式的革命,就像为晶体管电脑到个人电脑的改变,关键他还全部开源。

DeepSeek的技术突破标志着大模型发展进入"高效能时代",技术民主化进程正在重塑AI产业格局:初创公司现可用1/10的算力成本达到GPT-3.5级性能,传统行业智能化改造门槛显著降低。随着NVIDIA、微软等巨头的生态支持,DeepSeek的技术红利将持续释放,推动全球AI应用进入普惠新阶段。

BY

纯个人经验,如有帮助,请收藏点赞,如需转载,请注明出处。
微信公众号:环境猫 er
CSDN : 细节处有神明
个人博客: https://maoyu92.github.io/

DeepSeek 崛起引发的思考:一场颠覆性技术革命如何重塑全球AI与半导体格局-CSDN博客

使用Streamlit与DeepSeek API快速构建Chat应用-CSDN博客

### DeepSeek 免费 API 接口使用方法 对于希望利用 DeepSeek免费 API 进行开发的开发者来说,理解并遵循其提供的官方指南至关重要。为了有效使用这些资源,建议仔细查阅 DeepSeek 提供的相关文档[^1]。 #### 获取访问权限 要开始使用 DeepSeekAPI,首先需注册账号并获取必要的认证密钥。这通常涉及创建一个应用程序实例,并从中获得特定于该应用的 API 密钥。此步骤确保了安全性和身份验证机制的有效实施。 #### 配置环境设置 当遇到 DeepSeek 官方 API 不可用的情况时,可以按照替代方案操作来配置环境。具体而言,应先禁用其他预设选项,专注于启用仅有的两个 DeepSeek 模型服务。接着,在指定位置填写来自阿里云平台所生成的 API Key 和基础 URL 地址 `https://dashscope.aliyuncs.com/compatible-mode/v1` 。完成上述配置之后,记得点击页面上的 "Verify" 按钮以确认连接无误[^2]。 #### 编写代码示例 下面是一个简单的 Python 脚本片段,展示了如何调用 DeepSeek 对话模块: ```python import requests url = 'https://dashscope.aliyuncs.com/compatible-mode/v1/deepseek/conversation' headers = { 'Content-Type': 'application/json', 'Authorization': 'Bearer YOUR_API_KEY' # 替换成实际取得的API key } data = {"message": "你好"} response = requests.post(url, headers=headers, json=data) if response.status_code == 200: result = response.json() print(result['reply']) else: print(f"Error {response.status_code}: {response.text}") ``` 这段脚本发送了一个 POST 请求到 DeepSeek 的对话接口,并处理响应数据。注意替换其中的 `YOUR_API_KEY` 为真实的 API 认证令牌。 #### 构建结论部分 如同构建一篇完整的文章一样,任何基于 API 开发的应用程序也应当有一个明确的结果展示环节。这一阶段是对整个项目逻辑流程的一个总结,它不仅概括了前面各个功能模块的工作原理及其相互关系,还向用户传达了最终的价值所在[^3]。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

细节处有神明

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值