1月30日,英伟达在其NIM平台上架了由DeepSeek开源的DeepSeek R1模型,这标志着开发者们现在能够免费利用这一强大的API快速构建各种应用程序。感谢DeepSeek的开源贡献,让我们得以免费体验如此优秀的模型。
获取英伟达 key
首先,登录英伟达官方网站,进入NIM界面,找到DeepSeek R1项目,并点击右侧的“获取API Key”。页面会提供Python调用方法,方便直接测试和集成。
[deepseek-r1 Model by Deepseek-ai | NVIDIA NIM](https://build.nvidia.com/deepseek-ai/deepseek-r1)
以下是英伟达给的调用接口。
from openai import OpenAI
client = OpenAI(
base_url = "https://integrate.api.nvidia.com/v1",
api_key = "$API_KEY_REQUIRED_IF_EXECUTING_OUTSIDE_NGC"
)
completion = client.chat.completions.create(
model="deepseek-ai/deepseek-r1",
messages=[{"role":"user","content":"Which number is larger, 9.11 or 9.8?"}],
temperature=0.6,
top_p=0.7,
max_tokens=4096,
stream=True
)
for chunk in completion:
if chunk.choices[0].delta.content is not None:
print(chunk.choices[0].delta.content, end="")
使用Chainlit框架构建简单页面
之前曾用 streamlit 构建了 deepseek 对话页面,但是其功能略微粗糙,相较于传统Streamlit框架,我们采用Chainlit 实现更高效、简洁的流式交互体验。Chainlit的异步处理架构完美适配大语言模型的流式响应特性,主要技术优势包括:
-
实时token级渲染(Token-by-token rendering)
-
WebSocket长连接支持
-
会话状态管理(Session state management)
-
多模态输入支持(文本/文件/图像)
今天尝试使用Chainlit框架构建一个简单的交互式页面。新建一个 app.py
文件,并复制以下代码:
# 安装第三方库
# pip install chainlit openai
import chainlit as cl
from openai import OpenAI
@cl.on_chat_start
asyncdef start_chat():
# 初始化客户端(密钥建议通过环境变量管理)
client = OpenAI(
base_url="https://integrate.api.nvidia.com/v1",
api_key=""
)
# 将客户端保存到用户会话
cl.user_session.set("client", client)
@cl.on_message
asyncdef main(message: cl.Message):
# 获取客户端实例
client = cl.user_session.get("client")
# 创建消息对象(支持流式响应)
msg = cl.Message(content="")
# 调用NVIDIA API
completion = client.chat.completions.create(
model="deepseek-ai/deepseek-r1",
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": message.content}
],
temperature=0.6,
top_p=0.7,
max_tokens=4096,
stream=True
)
# 流式处理响应
for chunk in completion:
if chunk.choices[0].delta.content:
await msg.stream_token(chunk.choices[0].delta.content)
# 发送完整响应
await msg.send()
技术参数说明:
-
基础接口地址:
https://integrate.api.nvidia.com/v1
-
模型标识符:
deepseek-ai/deepseek-r1
-
最大上下文窗口:4096 tokens
-
默认推理参数:temperature=0.6,top_p=0.7
在命令行中输入
chainlit run app.py
跳转到 8000 端口,就可以对话了。可以看到的确使用了
完美展现了过程并实现了流式输出。
chainlit 录屏
技术生态影响与行业动态
打不过就加入,随着 deepseek 的开源,国内外大厂都认识到他的价值,同时引发全球技术生态的连锁反应,其核心优势体现在:
技术指标 | DeepSeek R1 | LLaMA2-13B | Mistral-7B |
---|---|---|---|
推理成本($/1M tokens) | 0.15 | 0.45 | 0.28 |
训练算力消耗(PF-days) | 820 | 1840 | 950 |
代码生成准确率(HumanEval) | 68.9% | 52.1% | 59.3% |
了英伟达(NVIDIA)将DeepSeek集成到其NIM平台外,其他行业巨头也迅速跟进:
-
微软:在Azure AI和GitHub上提供DeepSeek R1模型。
-
AMD:为MI300系列GPU优化了ROCm推理加速方案,显著提升了DeepSeek在高性能计算环境中的表现。
-
印度数字部:基于DeepSeek架构构建 AI项目,旨在打造符合本国需求的基础模型。
以上说明 deepseek 的确是里程碑式的革命,就像为晶体管电脑到个人电脑的改变,关键他还全部开源。
DeepSeek的技术突破标志着大模型发展进入"高效能时代",技术民主化进程正在重塑AI产业格局:初创公司现可用1/10的算力成本达到GPT-3.5级性能,传统行业智能化改造门槛显著降低。随着NVIDIA、微软等巨头的生态支持,DeepSeek的技术红利将持续释放,推动全球AI应用进入普惠新阶段。
BY
纯个人经验,如有帮助,请收藏点赞,如需转载,请注明出处。
微信公众号:环境猫 er
CSDN : 细节处有神明
个人博客: https://maoyu92.github.io/