图像去雾毕业论文准备05-python中科学计算(Numpy和Scipy)

图像去雾毕业论文准备05-python中科学计算(NumPy和SciPy)

但凡对深度学习有所学习基本上都知道这两个包,尤其是NumPy和裂变类似,但是运行效率又远高于列表,在Pytorchh中,numpy也很重要,废话少说,开干!

NumPy 和 SciPy是Python中用以实现科学计算的模块包
Numpy主要提供了数组对象、基本的数组函数和傅里叶变换的相关函数。而SciPy依赖与NumPy

一、包的安装这个就不介绍了,如果不会可以网上搜下教程,或者放弃学习吧(这两个包很基础,安装也很简单,唯一一点就是需要注意安装版本,之前学习tensorflow的时候,提示我与Numpy版本不符,别的倒没啥)
关于SciPy安装Scipy安装教程(解决安装慢的问题)

随便测试一个代码

import numpy as np
from scipy import optimize
x = np.array([8.19, 2.72, 6.39, 8.71, 4.7, 2.66, 3.78])
y = np.array([7.01, 2.78, 6.47, 6.71, 4.1, 4.23, 4.05])


def residuals(p):
    k, b = p
    return y - (k * x + b)
r = optimize.leastsq(residuals, [1, 1])
print(r)

如果两个包安装都是正确的,那么就会出现下面的运行结果
(array([0.61349535, 1.79409255]), 3)
Process finished with exit code 0

#!/usr/bin/python3.6
# -*- coding: utf-8 -*-
# @Time    : 2021/1/3 14:35
# @Author  : ptg
# @Email   : zhxwhchina@163.com
# @File    : 异常.py
# @Software: PyCharm

# 导入模块
import numpy as np
# 生成一个数组对象
a = np.array((1,2,3,4,5))
print(a)

# 生成一个数组对象
b = np.array(([1,2,3],[4,5,6],[7,8,9]))
print(b)

# 数组相加
c = b + b
print(c)

# 数组对象的乘法运算
d = c * 2
print(d)

# 数组除法运算
e = d / c
print(e)

# 求正弦
print(np.sin(b))

# 数组重新调整大小
print(np.resize(b,[2,2]))


# 求和sum
print(np.sum(b))

# 0矩阵
ozeros = np.zeros((10,10))
print(ozeros)

# 1矩阵
Iones = np.ones((10,10))
print(Iones)

关于Scipy

# 导入scipy库
import scipy
# 生成一个矩阵
a = scipy.mat('[1,2,3;4,5,6;7,8,9]')
print(a)

基本上和numpy类似
在这里插入图片描述

a = scipy.mat(’[1,-1;-1,2;2,-2;-3,1’)
b = scipy.mat(’[1;2;3;4]’)
x,y,z,w = linalg.lstsq(a,b)
linalg这个好像出错了
总之是可以进行线性方程求解的
先到这吧(完!)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值