图像去雾毕业论文准备05-python中科学计算(NumPy和SciPy)
但凡对深度学习有所学习基本上都知道这两个包,尤其是NumPy和裂变类似,但是运行效率又远高于列表,在Pytorchh中,numpy也很重要,废话少说,开干!
NumPy 和 SciPy是Python中用以实现科学计算的模块包
Numpy主要提供了数组对象、基本的数组函数和傅里叶变换的相关函数。而SciPy依赖与NumPy
一、包的安装这个就不介绍了,如果不会可以网上搜下教程,或者放弃学习吧(这两个包很基础,安装也很简单,唯一一点就是需要注意安装版本,之前学习tensorflow的时候,提示我与Numpy版本不符,别的倒没啥)
关于SciPy安装Scipy安装教程(解决安装慢的问题)
随便测试一个代码
import numpy as np
from scipy import optimize
x = np.array([8.19, 2.72, 6.39, 8.71, 4.7, 2.66, 3.78])
y = np.array([7.01, 2.78, 6.47, 6.71, 4.1, 4.23, 4.05])
def residuals(p):
k, b = p
return y - (k * x + b)
r = optimize.leastsq(residuals, [1, 1])
print(r)
如果两个包安装都是正确的,那么就会出现下面的运行结果
(array([0.61349535, 1.79409255]), 3)
Process finished with exit code 0
#!/usr/bin/python3.6
# -*- coding: utf-8 -*-
# @Time : 2021/1/3 14:35
# @Author : ptg
# @Email : zhxwhchina@163.com
# @File : 异常.py
# @Software: PyCharm
# 导入模块
import numpy as np
# 生成一个数组对象
a = np.array((1,2,3,4,5))
print(a)
# 生成一个数组对象
b = np.array(([1,2,3],[4,5,6],[7,8,9]))
print(b)
# 数组相加
c = b + b
print(c)
# 数组对象的乘法运算
d = c * 2
print(d)
# 数组除法运算
e = d / c
print(e)
# 求正弦
print(np.sin(b))
# 数组重新调整大小
print(np.resize(b,[2,2]))
# 求和sum
print(np.sum(b))
# 0矩阵
ozeros = np.zeros((10,10))
print(ozeros)
# 1矩阵
Iones = np.ones((10,10))
print(Iones)
关于Scipy
# 导入scipy库
import scipy
# 生成一个矩阵
a = scipy.mat('[1,2,3;4,5,6;7,8,9]')
print(a)
基本上和numpy类似
a = scipy.mat(’[1,-1;-1,2;2,-2;-3,1’)
b = scipy.mat(’[1;2;3;4]’)
x,y,z,w = linalg.lstsq(a,b)
linalg这个好像出错了
总之是可以进行线性方程求解的
先到这吧(完!)