图像去雾毕业论文准备17-深度学习框架(pytorch)——超级详细(3个小时看完一本书(关键部分))

图像去雾毕业论文准备17-深度学习框架(pytorch)——超级详细(3个小时看完一本书(关键部分))

书籍《深度学习框架PyTorch入门与实践》陈云·著

书籍有配套的代码,大家可以在github下载,进行演练操作,今天下午(2021年1月8日)用3个小时快速过一遍(自己论文需要的),晚上开始系统学习卷积神经网络,后面开始搜代码进行论文复现。

好啦,配置环境的事情前面都已经交代过,就不在罗列了,根据自己电脑的情况,下载安装必要的库!

Tensor

Tensor是PyTorch中重要的数据结构,可认为是一个高维数组。它可以是一个数(标量)、一维数组(向量)、二维数组(矩阵)以及更高维的数组。Tensor和Numpy的ndarrays类似,但Tensor可以使用GPU进行加速。Tensor的使用和Numpy及Matlab的接口十分相似,下面通过几个例子来看看Tensor的基本使用。

 from __future__ import print_function
import torch as t
t.__version__
# 构建 5x3 矩阵,只是分配了空间,未初始化
x = t.Tensor(5, 3)

x = t.Tensor([[1,2],[3,4]])
x
x = torch.Tensor(5,3)
x = torch.Tensor([[1,2],[3,4]])
x

在这里插入图片描述

# 新建一个全是1的tensor
a = torch.ones(5)
a

从tensor到numpy

b = a.numpy()#tensor->numpy
type(b)

从numpy到tensor

import numpy as np 
a = np.ones(5)
b = torch.from_numpy(a)
b

注:tensor和numpy之间共有内存,所有他们之间转换很快,而且几乎不会消耗资源。也就意味着只要其中一个改变了,另一个也随之改变。
在这里插入图片描述

scalar.item() # 使用scalar.item()能从中取出python对象的数值

需要注意的是,t.tensor()或者tensor.clone()总是会进行数据拷贝,新tensor和原来的数据不再共享内存。所以如果你想共享内存的话,建议使用torch.from_numpy()或者tensor.detach()来新建一个tensor, 二者共享内存。

这里需要使用cuda才可实现,我的没有,前面已经提到过(后面打算用云端服务器进行实现)

if torch.is_avai;able(0):
    x = x.cuda()
    y = y.cuda()
    z = x + y 
# tensor可通过.cuda方法转为GPU的Tensor,从而享受GPU带来的加速运算
# 在不支持CUDA的机器上,上面的是不会运行的
"""
在这里会发现GPU运算的速度并未提升太多,这是因为x和y太小且运算也较简单,而且将数据从内存转移到显卡还需要话费额外的开销。
GPU的有时需要在大规模数据和复杂运算下才能体现出来
"""

autograd: 自动微分

深度学习的算法本质上是通过反向传播求导数,而PyTorch的**autograd**模块则实现了此功能。在Tensor上的所有操作,autograd都能为它们自动提供微分,避免了手动计算导数的复杂过程。

要想使得Tensor使用autograd功能,只需要设置tensor.requries_grad=True.
import torch
x = torch.ones(2,2,requires_grad = True) # pytorch会自动调用autograd 记录操作
x

tensor([[1., 1.],
[1., 1.]], requires_grad=True)

y =x.sum()
y

tensor(4., grad_fn=)

y.grad_fn # 占用的有内存空间

<SumBackward0 at 0x1852fc17588>

y.backward()
x.grad

注意:grad在反向传播过程中是累加的(accumulated),这意味着每一次运行反向传播,梯度都会累加之前的梯度,所以反向传播之前需把梯度清零。

x.grad.data.zero_()
# 此代码会修改自身的值,类似add_

在这里插入图片描述

神经网络

Autograd实现了反向传播功能,但是直接用来写深度学习的代码在很多情况下还是稍显复杂,torch.nn是专门为神经网络设计的模块化接口。nn构建于 Autograd之上,可用来定义和运行神经网络。nn.Module是nn中最重要的类,可把它看成是一个网络的封装,包含网络各层定义以及forward方法,调用forward(input)方法,可返回前向传播的结果。下面就以最早的卷积神经网络:LeNet为例,来看看如何用nn.Module实现。LeNet的网络结构如图2-7所示。
在这里插入图片描述

import torch.nn as nn
import torch.nn.functional as F

class Net(nn.Module):
    def __init__(self):
        # nn.Module子类的函数必须在构造函数中执行父类的构造函数
        # 下式等价于nn.Moudle.__init__(self)
        super(Net,self).__init__()
        
        #卷积层'1'表示输入图片为单通道,‘6’表示输出通道数,‘5’表示卷积核为5*5
        # 卷积层
        self.conv1 = nn.Conv2d(1,6,5)
        # 卷积层
        self.conv2 = nn.Conv2d(6,16,5)
        # 仿射层/全连接层,y = Wx + b
        self.fc1 = nn.Linear(16*5*5,120)
        self.fc2 = nn.Linear(120,84)
        self.fc3   = nn.Linear(84, 10)
        
        def forward(self, x): 
            # 卷积 -> 激活 -> 池化 
            x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
            x = F.max_pool2d(F.relu(self.conv2(x)), 2) 
            # reshape,‘-1’表示自适应
            x = x.view(x.size()[0], -1) 
            x = F.relu(self.fc1(x))
            x = F.relu(self.fc2(x))
            x = self.fc3(x)        
            return x

net = Net()
print(net)

Net(
(conv1): Conv2d(1, 6, kernel_size=(5, 5), stride=(1, 1))
(conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))
(fc1): Linear(in_features=400, out_features=120, bias=True)
(fc2): Linear(in_features=120, out_features=84, bias=True)
(fc3): Linear(in_features=84, out_features=10, bias=True)
)
只要在nn.Module的子类中定义了forward函数,backward函数就会自动被实现(利用autograd)。在forward 函数中可使用任何tensor支持的函数,还可以使用if、for循环、print、log等Python语法,写法和标准的Python写法一致。

网络的可学习参数通过net.parameters()返回,net.named_parameters可同时返回可学习的参数及名称。

params = list(net.parameters())
print(len(params))
for name,parameters in net.named_parameters():
    print(name,':',parameters.size())

在这里插入图片描述

数据加载与预处理

在深度学习中数据加载及预处理是非常复杂繁琐的,但PyTorch提供了一些可极大简化和加快数据处理流程的工具。同时,对于常用的数据集,PyTorch也提供了封装好的接口供用户快速调用,这些数据集主要保存在torchvison中。

torchvision实现了常用的图像数据加载功能,例如Imagenet、CIFAR10、MNIST等,以及常用的数据转换操作,这极大地方便了数据加载,并且代码具有可重用性。

小试牛刀 CIFAR-10 分类

下面我们尝试实现对CIFAR-10数据集的分类,步骤如下:
1 使用torchvision加载并预处理CIFAR-10数据集
2 定义网络
3 定义损失函数和优化器
4 训练网络并更新网络参数
5 测试网络
在这里插入图片描述

import torchvision as tv
import torchvision.transforms as transforms
from torchvision.transforms import ToPILImage
show = ToPILImage() # 可以把Tensor转成Image,方便可视化

# 第一次运行程序torchvision会自动下载CIFAR-10数据集,
# 大约100M,需花费一定的时间,
# 如果已经下载有CIFAR-10,可通过root参数指定

# 定义对数据的预处理
transform = transforms.Compose([
        transforms.ToTensor(), # 转为Tensor
        transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), # 归一化
                             ])

# 训练集
trainset = tv.datasets.CIFAR10(
                    root='/home/cy/tmp/data/', 
                    train=True, 
                    download=True,
                    transform=transform)

trainloader = t.utils.data.DataLoader(
                    trainset, 
                    batch_size=4,
                    shuffle=True, 
                    num_workers=2)

# 测试集
testset = tv.datasets.CIFAR10(
                    '/home/cy/tmp/data/',
                    train=False, 
                    download=True, 
                    transform=transform)

testloader = t.utils.data.DataLoader(
                    testset,
                    batch_size=4, 
                    shuffle=False,
                    num_workers=2)

classes = ('plane', 'car', 'bird', 'cat',
           'deer', 'dog', 'frog', 'horse', 'ship', 'truck')

(data, label) = trainset[100]
print(classes[label])

# (data + 1) / 2是为了还原被归一化的数据
show((data + 1) / 2).resize((100, 100))

dataiter = iter(trainloader)
images, labels = dataiter.next() # 返回4张图片及标签
print(' '.join('%11s'%classes[labels[j]] for j in range(4)))
show(tv.utils.make_grid((images+1)/2)).resize((400,100))

import torch.nn as nn
import torch.nn.functional as F
# 定义网络
# 拷贝上面的LeNet网络,修改self.conv1第一个参数为3通道,因CIFAR-10是3通道彩图。

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5) 
        self.conv2 = nn.Conv2d(6, 16, 5)  
        self.fc1   = nn.Linear(16*5*5, 120)  
        self.fc2   = nn.Linear(120, 84)
        self.fc3   = nn.Linear(84, 10)

    def forward(self, x): 
        x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2)) 
        x = F.max_pool2d(F.relu(self.conv2(x)), 2) 
        x = x.view(x.size()[0], -1) 
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)        
        return x


net = Net()
print(net)


# 定义损失函数和优化器(loss和optimizer)
from torch import optim
criterion = nn.CrossEntropyLoss() # 交叉熵损失函数
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)


# 训练网络
# 所有网络的训练流程都是类似的,不断地执行如下流程:

# 输入数据
# 前向传播+反向传播
# 更新参数
t.set_num_threads(8)
for epoch in range(2):  
    
    running_loss = 0.0
    for i, data in enumerate(trainloader, 0):
        
        # 输入数据
        inputs, labels = data
        
        # 梯度清零
        optimizer.zero_grad()
        
        # forward + backward 
        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()   
        
        # 更新参数 
        optimizer.step()
        
        # 打印log信息
        # loss 是一个scalar,需要使用loss.item()来获取数值,不能使用loss[0]
        running_loss += loss.item()
        if i % 2000 == 1999: # 每2000个batch打印一下训练状态
            print('[%d, %5d] loss: %.3f' \
                  % (epoch+1, i+1, running_loss / 2000))
            running_loss = 0.0
print('Finished Training')

# 此处仅训练了2个epoch(遍历完一遍数据集称为一个epoch),来看看网络有没有效果。将测试图片输入到网络中,计算它的label,然后与实# 际的label进行比较。
dataiter = iter(testloader)
images, labels = dataiter.next() # 一个batch返回4张图片
print('实际的label: ', ' '.join(\
            '%08s'%classes[labels[j]] for j in range(4)))
show(tv.utils.make_grid(images / 2 - 0.5)).resize((400,100))

# 计算图片在每个类别上的分数
outputs = net(images)
# 得分最高的那个类
_, predicted = t.max(outputs.data, 1)

print('预测结果: ', ' '.join('%5s'\
            % classes[predicted[j]] for j in range(4)))
correct = 0 # 预测正确的图片数
total = 0 # 总共的图片数


# 由于测试的时候不需要求导,可以暂时关闭autograd,提高速度,节约内存
with t.no_grad():
    for data in testloader:
        images, labels = data
        outputs = net(images)
        _, predicted = t.max(outputs, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum()

print('10000张测试集中的准确率为: %d %%' % (100 * correct / total))
  • 1
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值