强化学习
文章平均质量分 80
点PY
商务合作、付费咨询、有偿辅导+扣扣1224425503
展开
-
基于强化学习的论文合集
文章目录2020REINFORCED ACTIVE LEARNING FOR IMAGE SEGMENTATION2020REINFORCED ACTIVE LEARNING FOR IMAGE SEGMENTATIONcode: https://github.com/ArantxaCasanova/ralis摘要基于学习的语义分割方法有两个固有的挑战。首先,获取像素级标签是昂贵和耗时的。其次,真实的分割数据集是高度不平衡的:一些类别比其他类别要丰富得多,从而使性能偏向于最具代表性的类别。在本文中原创 2021-12-29 20:27:25 · 1485 阅读 · 0 评论 -
基于DQN的CartPole实战
文章目录前言任务Replay MemoryQ-network输入提取training超参数和实用工具trainning loop前言本博文展示了如何使用PyTorch在OpenAI Gym的CartPole-v0任务上训练一个深度Q学习(DQN)代理。任务智能体必须在两种行动中做出选择——向左或向右移动小车——这样贴到车上的柱子才能保持直立。你可以在Gym网站上找到带有各种算法和可视化的官方排行榜。当代理观察环境的当前状态并选择一个操作时,环境将转换为一个新状态,并返回一个指示操作结果的奖励。在原创 2021-01-08 10:12:55 · 827 阅读 · 4 评论 -
第六章 利用深度Q学习来实现最优控制的智能体
文章目录前言改进的Q-learning代理利用神经网络近似q函数使用PyTorch来实现浅层Q网络实现Shallow_Q_LearnerExperience replay实现the experience memory给Q-learner类实现the replay experience方法回顾一下贪心行为策略实现epsilon衰变时间表实现深度Q学习代理在PyTorch中实现一个深度卷积Q网络使用目标Q网络来稳定代理的学习记录和可视化代理的学习过程使用tensorboard和可视化PyTorch RL代理的进原创 2021-01-06 09:36:13 · 1537 阅读 · 0 评论 -
gym未检测到ffmpeg
您需要安装一个可以被Anaconda识别的ffmpeg副本。请在终端中运行此命令conda install -c conda-forge ffmpeg原创 2021-01-04 11:28:04 · 265 阅读 · 0 评论 -
第五章 实现你的第一个学习代理-解决山地车的问题
文章目录前言理解山车问题山车问题和环境从零开始实现Q-learning回顾Q-learning使用Python和Numpy来实现Q-learning代理定义超参数实现Q_learner类的__init__方法实现Q_learner类的discretize方法实现Q_learner的get_action方法实现Q_learner类的学习方法完整实现Q_learner类在Gym中训练强化学习代理测试和记录智能体的性能简单完整的Q-learner实现用来解决山车问题总结前言干得好,走到这一步!在前面的章节中,原创 2021-01-04 10:21:53 · 793 阅读 · 0 评论 -
第四章 探索环境和命名法的列表
文章目录探索环境命名法探索Gym环境理解Gym接口总结探索环境让我们从选择一个环境和理解Gym界面开始。您可能已经熟悉了前面章节中用于创建Gym环境的基本函数调用,在前面的章节中,我们使用这些函数调用来测试我们的安装。在这里,我们将正式地进行一遍。现在我们可以使用gym.make方法从可用的环境列表中创建一个环境。您可能会问如何找到系统上可用的Gym环境列表。我们将创建一个小的实用程序脚本来生成环境列表,以便您以后需要时可以引用它。让我们在~/rl_gym_book/ch4目录下创建一个名为list_原创 2021-01-03 23:37:15 · 374 阅读 · 0 评论 -
第二章 强化学习与深度强化学习
文章目录前言什么是强化学习以直观的方式理解AI的含义和内容监督学习非监督学习强化学习强化学习实践AgentRewardsEnvironmentStateModelValue functionState-value functionAction-value functionPolicy深度强化学习强化学习和深度强化学习的应用总结前言本章对强化学习的基本术语和概念提供了一个简明的解释。它将使您很好地理解开发人工智能代理的基本强化学习框架。本章还将介绍深度强化学习,并为您提供一些算法可以帮助您解决的高级问题类原创 2021-01-03 15:22:42 · 2112 阅读 · 1 评论 -
第一章 智能体与学习环境
文章目录智能体学习环境OpenAI GymAlgorithmic environmentsAtari environmentsBoard gamesBox2DClassic controlDoomMineCraftMuJoCoSoccerToy text智能体人工智能的一个主要目标是构建智能代理。感知环境、理解、推理和学习计划、做出决定并根据环境采取行动是智能体的基本特征。我们将从理解什么是智能代理开始,从代理的基本定义,到在此基础上添加智能。代理是基于其环境观察(感知)行为的实体。人类和机器人是具有原创 2021-01-02 22:07:56 · 1440 阅读 · 0 评论 -
DQN
文章目录前言强化学习与神经网络更新神经网络DQN 两大利器参考前言今天我们会来说说强化学习中的一种强大武器, Deep Q Network 简称为 DQN. Google Deep mind 团队就是靠着这 DQN 使计算机玩电动玩得比我们还厉害.强化学习与神经网络之前我们所谈论到的强化学习方法都是比较传统的方式, 而如今, 随着机器学习在日常生活中的各种应用, 各种机器学习方法也在融汇, 合并, 升级. 而我们今天所要探讨的强化学习则是这么一种融合了神经网络和 Q learning 的方法, 名转载 2020-12-29 20:55:50 · 686 阅读 · 0 评论 -
基于Q_learning的宝藏猎人
文章目录前言预设值Q 表定义动作环境反馈 S_, R环境更新强化学习主循环参考前言本博文将简单用Q-learning实现一个例子,在世界的右边有宝藏, 探索者只要得到宝藏尝到了甜头, 然后以后就记住了得到宝藏的方法, 这就是他用强化学习所学习到的行为。-o—TT 就是宝藏的位置, o 是探索者的位置Q-learning 是一种记录行为值 (Q value) 的方法, 每种在一定状态的行为都会有一个值 Q(s, a), 就是说 行为 a 在 s 状态的值是 Q(s, a). s 在上面的探索者游转载 2020-12-29 10:13:56 · 339 阅读 · 0 评论 -
Q-Learning
文章目录行为准则QLearning 决策QLearning 更新QLearning整体算法QLearning 中的 Gamma参考行为准则我们做事情都会有自己的一个行为准则,比如小时候爸妈常说“不写完作业就不准看电视”。所以我们在写作业的状态(state)下,好的行为就是继续写作业,直到写完它,我们还可以得到奖励(reward),不好的行为就是没写完作业就跑去看电视了,被爸妈发现就会被惩罚,这种事情做的多了,也变成了我们不可磨灭的记忆,这其实就是一个Q-learning的决策过程。QLearning原创 2020-12-23 11:11:25 · 229 阅读 · 0 评论