about Sigma-algebra

σ-代数(σ-algebra)是数学分析和概率论中的概念,是集合的一种结构,满足包含空集、闭合于补集、闭合于可数并集和可数交集等条件。它在概率论中用于定义可测空间。文章介绍了σ-代数的定义、性质、简单实例和与正则表达式的关联。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Sigma-algebra( Σ \Sigma Σ-algebra, σ \sigma σ-algerbra)

In mathematical analysis and in probability theory, a σ \sigma σ-algebra (also σ \sigma σ-field) on a set X X X is a collection Σ \Sigma Σ of subsets of X X X that includes the empty subset, is closed under complement, and is closed under countable unions and countable intersections.

The pair ( X , Σ ) (X, Σ) (X,Σ) is called a measurable space or Borel space.
A σ \sigma σ-algebra is a type of algebra of sets. An algebra of sets needs only to be closed under the union or intersection of finitely many subsets, which is a weaker condition.

If X = { a , b , c , d } X = \{a, b, c, d\} X={ a,b,c,d}, one possible σ \sigma σ-algebra on X X X is Σ = {   ∅ , { a , b } , { c , d } , { a , b , c , d } } \Sigma = \{ \emptyset, \{ a,b\},\{c,d\},\{a,b,c,d\} \} Σ={ ,{ a,b},{ c,d},{ a,b,c,d}}, where ∅ \emptyset is the empty set. In general, a finite algebra is always a σ \sigma σ-algebra.

If { A 1 , A 2 , A 3 , … } \{A1, A2, A3, …\} { A1,A2,A3,} is a countable partition of X X X then the collection of all unions of sets in the partition (including the empty set) is a σ \sigma σ-algebra.

Definition and properties

Definition
Let X X X be some set, and let P ( X ) P(X) P(X) represent its power set. Then a subset Σ ⊆ P ( X ) \Sigma \subseteq P(X) ΣP(X) is called a σ \sigma σ-algebra if it satisfies the following three properties:

  1. X X X is in Σ \Sigma Σ, and X X X is considered to be the universal set in the following context.
  2. Σ \Sigma Σ is closed under complementation: if A A A is in Σ \Sigma Σ, then so is its complement, X ∖ A X \setminus A XA.
  3. Σ \Sigma Σ is closed under countable unions. if A 1 , A 2 , A 3 , … A_1,A_2,A_3,\dots A1,A2,A3, are in Σ \Sigma Σ, then so is A = A 1 ∪ A 2 ∪ A 3 ∪ … A = A_1 \cup A_2 \cup A_3 \cup \dots A=A1A2A3 .

From these properties, it follows that the σ \sigma σ-algebra is also closed under countable intersections (by applying De Morgan’s laws).

It also follows that the empty set ∅ \empty

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值