Sigma-algebra( Σ \Sigma Σ-algebra, σ \sigma σ-algerbra)
In mathematical analysis and in probability theory, a σ \sigma σ-algebra (also σ \sigma σ-field) on a set X X X is a collection Σ \Sigma Σ of subsets of X X X that includes the empty subset, is closed under complement, and is closed under countable unions and countable intersections.
The pair ( X , Σ ) (X, Σ) (X,Σ) is called a measurable space or Borel space.
A σ \sigma σ-algebra is a type of algebra of sets. An algebra of sets needs only to be closed under the union or intersection of finitely many subsets, which is a weaker condition.
If X = { a , b , c , d } X = \{a, b, c, d\} X={ a,b,c,d}, one possible σ \sigma σ-algebra on X X X is Σ = { ∅ , { a , b } , { c , d } , { a , b , c , d } } \Sigma = \{ \emptyset, \{ a,b\},\{c,d\},\{a,b,c,d\} \} Σ={ ∅,{ a,b},{ c,d},{ a,b,c,d}}, where ∅ \emptyset ∅ is the empty set. In general, a finite algebra is always a σ \sigma σ-algebra.
If { A 1 , A 2 , A 3 , … } \{A1, A2, A3, …\} { A1,A2,A3,…} is a countable partition of X X X then the collection of all unions of sets in the partition (including the empty set) is a σ \sigma σ-algebra.
Definition and properties
Definition
Let X X X be some set, and let P ( X ) P(X) P(X) represent its power set. Then a subset Σ ⊆ P ( X ) \Sigma \subseteq P(X) Σ⊆P(X) is called a σ \sigma σ-algebra if it satisfies the following three properties:
- X X X is in Σ \Sigma Σ, and X X X is considered to be the universal set in the following context.
- Σ \Sigma Σ is closed under complementation: if A A A is in Σ \Sigma Σ, then so is its complement, X ∖ A X \setminus A X∖A.
- Σ \Sigma Σ is closed under countable unions. if A 1 , A 2 , A 3 , … A_1,A_2,A_3,\dots A1,A2,A3,… are in Σ \Sigma Σ, then so is A = A 1 ∪ A 2 ∪ A 3 ∪ … A = A_1 \cup A_2 \cup A_3 \cup \dots A=A1∪A2∪A3∪… .
From these properties, it follows that the σ \sigma σ-algebra is also closed under countable intersections (by applying De Morgan’s laws).
It also follows that the empty set ∅ \empty