素数筛

题目

给定一个正整数n(2≤n≤10000),先输出2~n之间的素数个数,换行后输出所有的素数。
输入:
9
输出:
4
2 3 5 7

思路1

先写一个判断素数的方法,然后遍历2~n,逐一进行判断。

#include <iostream>
#include <math.h>
#define MaxSize 10000

using namespace std;

//判断一个数是否为素数,是素数返回true,否则返回false 
bool isPrime(int num){
	if (num == 2){
		return true;
	}
	for (int i = 2; i<= sqrt(num); i++){
		if (num%i == 0)
			return false;
	}
	return true;
}

void displayPrime(){
	int n,cnt=0;
	int prime[MaxSize]={0};
	cin>>n;
	for (int i=2;i<=n;i++){
		if(isPrime(i)){
			prime[cnt++]=i;;
		}
	}
	cout<<cnt<<endl;
	for(int i=0;i<cnt;i++){
		cout<<prime[i]<<" ";
	}
	cout<<endl;
}

思路2

埃拉托斯特尼筛法(Sieve of Eratosthenes),其思想是把不大于根号n的所有素数的倍数剔除,那么剩下的就是素数。

#include <iostream>
#include <math.h>
#define MaxSize 10000

using namespace std;

//埃拉托斯特尼筛法
void Eratosthenes(){
	int n,cnt=0;
	int prime[MaxSize]={0};
	int check[MaxSize]={0};
	cin>>n;
	for(int i=2; i<=n; i++)
	{
		if(check[i] == 0){
			prime[cnt++] = i;
		}
		for(int j = i + i; j <= n; j += i){
			//将i的倍数全部标记为非素数
			check[j] = 1;      
		}
	}
	cout<<cnt<<endl;
	for(int i=0;i<cnt;i++){
		cout<<prime[i]<<" ";
	}
	cout<<endl;
}

思路3

欧拉筛法。在埃拉托斯特尼筛法的基础上,让每个合数只被它的最小质因子筛选一次,这样可以达到不重复的目的。

#include <iostream>
#include <math.h>
#define MaxSize 10000

using namespace std;

//欧拉筛法
void Euler(){
	int n,cnt=0;
	int prime[MaxSize]={0};
	int check[MaxSize]={0};
	cin>>n;
	for (int i = 2; i<=n; i++){
		if (check[i] == 0){
			prime[cnt++] = i;
		}
		for (int j = 0;j <cnt; j++){
			//若超过n的值,则退出循环
			if (i*prime[j] > n){
				break;		
			}
			//将数组prime里面纪录的素数,升序来当作要标记非素数的最小因子
			check[i*prime[j]] = 1;			
			if(i%prime[j] == 0){
				break;
			}
		}
	}
	cout<<cnt<<endl;
	for(int i=0;i<cnt;i++){
		cout<<prime[i]<<" ";
	}
	cout<<endl;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

代码星辰

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值