1.题目
给定一个二叉树,找出其最大深度。
二叉树的深度为根节点到最远叶子节点的最长路径上的节点数。
说明: 叶子节点是指没有子节点的节点。
示例:
给定二叉树 [3,9,20,null,null,15,7],
3
/ \
9 20
/ \
15 7
返回它的最大深度 3 。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/maximum-depth-of-binary-tree
2.思路
(1)回溯算法
(2)动态规划
(3)BFS
3.代码实现(Java)
//思路1————回溯算法
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
int maxDep = 0;
int curDep = 0;
public int maxDepth(TreeNode root) {
traverse(root);
return maxDep;
}
private void traverse(TreeNode root) {
if (root == null) {
return;
}
curDep++;
//更新 maxDep
maxDep = Math.max(maxDep, curDep);
traverse(root.left);
traverse(root.right);
curDep--;
}
}
//思路2————动态规划
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public int maxDepth(TreeNode root) {
if (root == null) {
return 0;
}
int leftMax = maxDepth(root.left);
int rightMax = maxDepth(root.right);
//根据左右子树的最大深度推出二叉树的最大深度
return Math.max(leftMax, rightMax) + 1;
}
}
//思路3————BFS
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public int maxDepth(TreeNode root) {
if (root == null) {
return 0;
}
Queue<TreeNode> queue = new LinkedList<>();
queue.offer(root);
int maxDep = 0;
while (!queue.isEmpty()) {
int levelSize = queue.size();
while (levelSize > 0) {
TreeNode node = queue.poll();
if (node.left != null) {
queue.offer(node.left);
}
if (node.right != null) {
queue.offer(node.right);
}
levelSize--;
}
maxDep++;
}
return maxDep;
}
}