LeetCode_二叉树_中等_1372.二叉树中的最长交错路径

1.题目

给你一棵以 root 为根的二叉树,二叉树中的交错路径定义如下:

  • 选择二叉树中 任意 节点和一个方向(左或者右)。
  • 如果前进方向为右,那么移动到当前节点的的右子节点,否则移动到它的左子节点。
  • 改变前进方向:左变右或者右变左。
  • 重复第二步和第三步,直到你在树中无法继续移动。

交错路径的长度定义为:访问过的节点数目 - 1(单个节点的路径长度为 0 )。
请你返回给定树中最长交错路径的长度。

示例 1:

在这里插入图片描述

输入:root = [1,null,1,1,1,null,null,1,1,null,1,null,null,null,1,null,1]
输出:3
解释:蓝色节点为树中最长交错路径(右 -> 左 -> 右)。

示例 2:

在这里插入图片描述

输入:root = [1,1,1,null,1,null,null,1,1,null,1]
输出:4
解释:蓝色节点为树中最长交错路径(左 -> 右 -> 左 -> 右)。

示例 3:
输入:root = [1]
输出:0

提示:
每棵树最多有 50000 个节点。
每个节点的值在 [1, 100] 之间。

2.思路

(1)DFS
参考本题官网题解

3.代码实现(Java)

//思路1————DFS
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {

    int res;

    public int longestZigZag(TreeNode root) {
        if (root == null) {
            return 0;
        }
        res = 0;
        dfs(root, true, 0);
        dfs(root, false, 0);
        return res;
    }

    private void dfs(TreeNode root, boolean dir, int len) {
        res = Math.max(res, len);
        if (dir) {
            //上一步方向为左
            if (root.left != null) {
                dfs(root.left, true, 1);
            }
            if (root.right != null) {
                dfs(root.right, false, len + 1);
            }
        } else {
            //上一步方向为右
            if (root.left != null) {
                dfs(root.left, true, len + 1);
            }
            if (root.right != null) {
                dfs(root.right, false, 1);
            }
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

代码星辰

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值