机器学习——k-均值算法(聚类)

前言:有三维聚类图,我只是一个代码的搬运工。。。

机器学习专栏机器学习专栏

k-均值(k-means)聚类

1、k-均值算法

k-均值算法是一种无监督学习,是一种“基于原型的聚类”(prototype-based clustering)方法,给定的数据是不含标签的 D = { x ( 1 ) , x ( 2 ) , . . . , x ( i ) } D=\{{x^{(1)},x^{(2)},...,x^{(i)}}\} D={x(1),x(2),...,x(i)},目标是找出数据的模式特征进行分类。如社交网络分析,通过用户特征进行簇划分,分出不同群体。
在这里插入图片描述
(图源网络,侵删)

2、k-均值算法的代价函数

给定数据集 D = { x ( 1 ) , x ( 2 ) , . . . , x ( i ) } D=\{{x^{(1)},x^{(2)},...,x^{(i)}}\} D={x(1),x(2),...,x(i)},k-均值聚类算法的代价函数(基于欧式距离的平方误差)为:
J = m 1 ∑ i = 1 m ∣ ∣ x ( i ) − u c ( i ) ∣ ∣ 2 J=\frac{m}{1}\sum_{i=1}^{m}||x^{(i)}-u_{c^{(i)}}||^2 J=1mi=1mx(i)uc(i)2
其中, c ( i ) c^{(i)} c(i)是训练样例 x ( i ) x^{(i)} x(i)分配的聚类序号; u c ( i ) u_{c^{(i)}} uc(i) x ( i ) x^{(i)} x(i)所属聚类的中心点 。k-均值算法的代价函数函数的物理意义就是,训练样例到其所属的聚类中心点的距离的平均值。

3、k-均值算法步骤

k-均值算法主要包括:根据聚类中心分配样本类别——>更新聚类中心

  1. 随机选择K个聚类中心 u 1 , u 2 , . . . , u K u_1,u_2,...,u_K u1,u2,...,uK
  2. 从1~m中遍历所有的数据集,计算 x ( i ) x^{(i)} x(i)分别到 u 1 , u 2 , . . . , u K u_1,u_2,...,u_K u1,u2,...,uK的距离,记录距离最短的聚类中心点 u k u_k uk,然后把 x ( i ) x^{(i)} x(i)这个点分配给这个簇,即令 c ( i ) = k c^{(i)}=k c(i)=k
  3. 从1~k中遍历所有的聚类中心,移动聚类中心的新位置到这个簇的均值处,即 u k = 1 c k ∑ j = 1 c k x ( j ) u_k=\frac{1}{c_k}\sum_{j=1}^{c_k}x^{(j)} uk=ck1j=1ckx(j),其中 c k c_k ck表示这个簇的样本数;
  4. 重复步骤2,直到聚类中心不再移动。

4、初始化聚类中心点和聚类个数

1、在实际应用的过程中,聚类结果会和我们初始化的聚类中心相关,因为代价函数可能会收敛在一个局部最优解上,而不是全局最优解。我们的解决方法是多次初始化,然后选取代价函数最小的
在这里插入图片描述
2、如果没有特别的业务要求,聚类个数如何选取?我们可以把聚类个数作为横坐标,代价函数作为纵坐标,找出拐点。
在这里插入图片描述

5、sklearn实现k-means算法

推荐一篇博文: 聚类效果评价

主函数KMeans

sklearn.cluster.KMeans(n_clusters=8,
	 init='k-means++', 
	n_init=10, 
	max_iter=300, 
	tol=0.0001, 
	precompute_distances='auto', 
	verbose=0, 
	random_state=None, 
	copy_x=True, 
	n_jobs=1, 
	algorithm='auto'
	)

参数解释:

  1. n_clusters:簇的个数,即你想聚成几类
  2. init: 初始簇中心的获取方法
  3. n_init: 获取初始簇中心的更迭次数,为了弥补初始质心的影响,算法默认会初始10次质心,实现算法,然后返回最好的结果。
  4. max_iter: 最大迭代次数(因为kmeans算法的实现需要迭代)
  5. tol: 容忍度,即kmeans运行准则收敛的条件
  6. precompute_distances:是否需要提前计算距离,这个参数会在空间和时间之间做权衡,如果是True 会把整个距离矩阵都放到内存中,auto 会默认在数据样本大于featurs*samples 的数量大于12e6 的时候False,False 时核心实现的方法是利用Cpython 来实现的
  7. verbose: 冗长模式(不太懂是啥意思,反正一般不去改默认值)
  8. random_state: 随机生成簇中心的状态条件。
  9. copy_x: 对是否修改数据的一个标记,如果True,即复制了就不会修改数据。bool 在scikit-learn 很多接口中都会有这个参数的,就是是否对输入数据继续copy 操作,以便不修改用户的输入数据。这个要理解Python 的内存机制才会比较清楚。
  10. n_jobs: 并行设置
  11. algorithm: kmeans的实现算法,有:‘auto’, ‘full’, ‘elkan’, 其中 'full’表示用EM方式实现

代码:

# -*- coding: utf-8 -*-
"""
Created on Wed Nov 20 18:52:21 2019

@author: 1
"""

import pandas as pd
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans

df=pd.read_csv('D:\\workspace\\python\machine learning\\data\\iris.csv',sep=',')
data=df.iloc[:,0:3]
kmeans=KMeans(n_clusters=3)   #n_clusters:number of cluster
kmeans.fit(data)
labels=kmeans.labels_#聚类标签
centres=kmeans.cluster_centers_#聚类中心

#画三维聚类结果图
markers=['o','^','*']
colors=['r','b','y']
data['labels']=labels
ax = plt.subplot(111, projection='3d')  # 创建一个三维的绘图工程
data_new,X,Y,Z=[[]]*3,[[]]*3,[[]]*3,[[]]*3
for i in range(3):
    data_new[i]=data.loc[data['labels']==i]
    X[i],Y[i],Z[i]=data_new[i].iloc[:,0],data_new[i].iloc[:,1],data_new[i].iloc[:,2]
    ax.scatter(X[i],Y[i],Z[i],marker=markers[i],c=colors[i])

聚类结果:
在这里插入图片描述

  • 0
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
【摘要】 目前,对于聚类问题的研究普遍存在于社会生活中的各个领域,如模式识别、图像处理、机器学习和统计学等。关于对生活中各种各样的数据的聚类分类问题已经成为众多学者的研究热题之一。聚类和分类的区别在于,聚类没有任何先验知识可循,要通过数据自身的特点,将数据自动的划分到不同的类别中。聚类的基本形式定义为“在已给的数据集合中寻找数据点集的同类集合。每一个集合叫做一个类,并确定了一个区域,在区域中对象的密度高于其他区域中的密度。”聚类方法有很多种,其中最简单的形式便是划分式聚类,划分式聚类试图将给定的数据集合分割成不相交的子集,使具体的聚类准则是最优的。实际中应用最广泛的准则是聚类误差平方和准则,即对于每一个点都计算它到相应的聚类中心点的平方距离,并对数据集合上的所有点的距离进行求和。一种最流行的基于最小聚类误差平法和的聚类方法是K-均值算法。然而,K-均值算法是一个局部搜索的算法,它存在一些严重的不足,比如K值需要预先确定、聚类结果的好坏依赖于初始点的选取。为了解决这些问题,这个领域的研究者开发了很多其他的一些技术,试图基于全局最优化的方法来解决聚类问题(比如模拟退火算法、遗传算法等)。然而这些技术并没有得到广泛的认可,在许多实际应用中应用最多的还是反复利用K-均值算法。K-均值算法是一种基于划分的聚类算法,它通过不断的迭代来进行聚类,当算法收敛到一个结束条件时就终止迭代过程,输出聚类结果。由于其算法思想简便,又容易实现对大规模数据的聚类,因此K-均值算法已成为一种最常用的聚类算法之一K-均值算法能找到关于聚类误差的局部的最优解,是一个能应用在许多聚类问题上的快速迭代算法。它是一种以点为基础的聚类算法,以随机选取的初始点为聚类中心,迭代地改变聚类中心来使聚类误差最小化。这种方法最主要的不足就是对于初始聚类中心点位置的选取敏感。因此,为了得到近似最优解,初始聚类中心的位置必须安排的有差异。本文就K-均值聚类算法聚类结果依赖于初始中心,而且经常收敛于局部最优解,而非全局最优解,以及聚类类别数K需要事先给定这两大缺憾展开研究。提出了分别解决这两个问题的算法各一个首先,本文将Hae-Sang等人的快速K-中心点算法确定初始中心点的思想应用于Aristidis Likas的全局K-均值聚类算法中下一个簇的初始中心选择上,提出一种改进的全局K-均值聚类算法,试图寻找一个周围样本点分布比较密集,且距离现有簇的中心都较远的样本点,将其作为下一个簇的最佳初始中心。通过对UCI机器学习数据库数据及人工随机模拟数据的测试,证明本文算法与Aristidis Likas的全局K-均值聚类算法和快速全局K-均值聚类算法比,在不影响聚类误差平方和的前提下,聚类时间更短,具有更好的性能。同时,本文介绍了自组织特征映射网络(Self-Organizing Feature Map, SOFM)的相关内容,SOFM网络是将多维数据映射到低维规则网格中,可以有效的进行大规模的数据挖掘,其特点是速度快,但是分类的精度不高。而K-均值聚类算法,是一种通过不断迭代调整聚类质心的算法,其特点是精度高,主要用于中小数据集的分类,但是聚类速度比较慢。因此,本文在分析了基于自组织特征映射网络聚类的学习过程,权系数自组织过程中邻域函数,以及学习步长的一般取值问题后,给出了基于自组织特征映射网络聚类实现的具体算法,将自组织特征网络与K-均值聚类算法相结合,提出了一种基于自组织映射网络的聚类方法,来实现对输入模式进行聚类,实现K-均值聚类算法聚类类别数的自动确定。同时通过实验进行仿真实现,证明该算法的有效性。 还原 【Abstract】 Clustering is a fundamental problem that frequently arises in a great variety of fields such as pattern recognition, image processing, machine learning and statistics. In general, clustering is defined as the problem of finding homogeneous groups of samples in a given data set. Each of these groups is called a cluster and can be defined as a region in which the density of exemplars is locally higher than in other regions.The simplest form of clustering is partition clustering w

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Tao_RY

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值