ML-svm-Iris data set

1 SVM

https://scikit-learn.org/stable/auto_examples/svm/plot_iris_svc.html

2 Iris data set

https://archive.ics.uci.edu/ml/datasets/iris

3 code:

from sklearn import datasets
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn import svm
from sklearn.metrics import accuracy_score

iris = datasets.load_iris()

# split it in features and labels
X = iris.data
y = iris.target

classes = ['Iris Setosa', 'Iris Versicolour', 'Iris Virginica']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

# use svm model
model = svm.SVC()
model.fit(X_train, y_train)
print(model)
predictions = model.predict(X_test)
acc = accuracy_score(y_test, predictions)
print('predictions: ', predictions)
print('actual: ', y_test)
print('accuracy: ', acc)

# get real data
for i in range(len(predictions)):
    print(classes[predictions[i]])
SVC()
predictions:  [1 2 1 0 0 1 2 1 0 1 0 1 2 1 0 1 2 0 0 1 2 1 0 2 2 1 2 1 0 2]
actual:  [1 2 1 0 0 1 2 1 0 1 0 1 1 1 0 1 2 0 0 1 2 2 0 2 2 1 2 1 0 2]
accuracy:  0.9333333333333333
Iris Versicolour
Iris Virginica
Iris Versicolour
Iris Setosa
Iris Setosa
Iris Versicolour
Iris Virginica
Iris Versicolour
Iris Setosa
Iris Versicolour
Iris Setosa
Iris Versicolour
Iris Virginica
Iris Versicolour
Iris Setosa
Iris Versicolour
Iris Virginica
Iris Setosa
Iris Setosa
Iris Versicolour
Iris Virginica
Iris Versicolour
Iris Setosa
Iris Virginica
Iris Virginica
Iris Versicolour
Iris Virginica
Iris Versicolour
Iris Setosa
Iris Virginica
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值