二叉树的最近公共祖先
给定一个二叉树, 找到该树中两个指定节点的最近公共祖先。
百度百科中最近公共祖先的定义为:“对于有根树 T 的两个节点 p、q,最近公共祖先表示为一个节点 x,满足 x 是 p、q 的祖先且 x的深度尽可能大(一个节点也可以是它自己的祖先)。”
示例 1:
输入:root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 1
输出:3
解释:节点 5 和节点1 的最近公共祖先是节点 3 。
示例 2:
输入:root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 4
输出:5
解释:节点 5 和节点4 的最近公共祖先是节点 5 。因为根据定义最近公共祖先节点可以为节点本身。
示例 3:
输入:root = [1,2], p = 1, q = 2
输出:1
提示:
- 树中节点数目在范围 [2, 10^5] 内。
- -10^9 <= Node.val <= 10^9
- 所有 Node.val 互不相同 。
- p != q
- p 和 q 均存在于给定的二叉树中。
解法:
参考
递归解析:
终止条件:
- 当越过叶节点,则直接返回 null ;
- 当 root 等于 p, q ,则直接返回 root ;
递推工作:
- 开启递归左子节点,返回值记为 left ;
- 开启递归右子节点,返回值记为 right ;
返回值: 根据 left 和 right ,可展开为四种情况;
- 当 left 和 right 同时为空 :说明 root 的左 / 右子树中都不包含 p,q ,返回
null ; - 当 left 和 right 同时不为空 :说明 p, q 分列在 root 的 异侧 (分别在 左 / 右子树),因此 root
为最近公共祖先,返回 root ; - 当 left为空 ,right 不为空 :p,q 都不在 root 的左子树中,直接返回 right 。具体可分为两种情况
- p,q 其中一个在 root 的 右子树 中,此时 right 指向 pp(假设为 p );
- p,q 两节点都在 root 的 右子树 中,此时的 right 指向 最近公共祖先节点 ;
- 当 left 不为空 , right 为空 :与情况 3. 同理;
class Solution {
public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
if (root==null || p==root || q==root) return root;
TreeNode left=lowestCommonAncestor(root.left,p,q);
TreeNode right=lowestCommonAncestor(root.right,p,q);
if (left==null&&right==null){
return null;
}else if (left!=null && right!=null){
return root;
}else {
return left==null? right:left;
}
}
}