1. RNN(Recurrent Neural Network)
时间轴
1986年,RNN 模型首次由 David Rumelhart 等人提出,旨在处理序列数据。
关键技术
- 循环结构
- 序列处理
- 长短时记忆网络(LSTM)和门控循环单元(GRU)
核心原理
RNN 通过循环结构让网络记住以前的输入信息,使其能够处理序列数据。每个节点不仅接收当前输入,还接收前一个节点的输出,从而形成记忆能力。
创新点
RNN 的创新点在于其循环结构,这使其能处理时间序列数据。但原始 RNN 容易出现梯度消失问题,后来的 LSTM 和 GRU 模型通过引入门控机制,极大地改善了这一问题。
适用数据
- 时间序列数据
- 语音信号
- 文本数据
应用场景
- 语言模型
- 语音识别
- 时间序列预测
经典案例
苹果的 Siri 和 Google 的语音助手都使用了基于 RNN 的技术来进行语音识别和处理。
2. CNN(Convolutional Neural Network)
时间轴
1