【Datawhale】零基础入门数据挖掘 - 二手车交易价格预测[task5模型融合]之stacking


在这里插入图片描述

1、什么是stacking?

简单来说,stacking就是当用初始训练数据学习出若干个基学习器后,将这几个学习器的预测结果作为新的训练集,来学习一个新的学习器。
在这里插入图片描述
将个体学习器结合在一起的时候,使用的方法叫做结合策略

  • 对于分类问题,我们可以用投票方法来选择输出最多的类。
  • 对于回归问题,我们可以将分类器输出的结果求平均值。
  • stacking也是一种结合策略,它将个体机器学习器的结果结合在一起。
    在stacking方法中,个体学习器叫做初级学习器,用于结合的学习器叫做次级或元学习器(meta-learner),次级学习器用于训练的数据叫做次级训练集。次级训练集是在原始数据训练集熵用初级学习器得到的。

2、如何进行stacking?

算法示意图如下:
西瓜书-stacking

  • 过程1-3 是训练出来个体学习器,也就是初级学习器
  • 过程5-9是 使用训练出来的个体学习器来得预测的结果,这个预测的结果当做次级学习器的训练集。
  • 过程11 是用初级学习器预测的结果训练出次级学习器,得到我们最后训练的模型。

3、Stacking的方法讲解

首先,我们先从一种“不那么正确”但是容易懂的Stacking方法讲起。

Stacking模型本质上是一种分层的结构,这里简单起见,只分析二级Stacking.假设我们有2个基模型 Model1_1、Model1_2 和 一个次级模型Model2

S t e p 1 Step 1 Step1. 基模型 Model1_1,对训练集train训练,然后用于预测 train 和 test 的标签列,分别是P1,T1

Model1_1 模型训练:
在这里插入图片描述
训练后的模型 Model1_1 分别在 train 和 test 上预测,得到预测标签分别是P1,T1
在这里插入图片描述
S t e p 2 Step 2 Step2. 基模型 Model1_2 ,对训练集train训练,然后用于预测train和test的标签列,分别是P2,T2

Model1_2 模型训练

在这里插入图片描述
训练后的模型 Model1_2 分别在 train 和 test 上预测,得到预测标签分别是P2,T2
在这里插入图片描述
S t e p 3 Step 3 Step3. 分别把P1,P2以及T1,T2合并,得到一个新的训练集和测试集train2,test2.
在这里插入图片描述
再用次级模型Model_2以真实训练集标签训练,以train_2,为特征进行训练,预测test_2,得到的最终的测试集预测的标签列为 Y P r e Y_{Pre} YPre
在这里插入图片描述
这是两层堆叠的一种基本的原始思路想法。在不同模型预测的结果基础上再加一层模型,进行再训练,从而得到模型最终的预测。

Stacking本质上就是这么直接的思路,但是当训练集和测试集分布不一致的情况下是存在问题的,其问题在于用初始模型训练的标签再利用真实标签进行再训练,毫无疑问会导致一定的模型过拟合训练,
举例:

from sklearn import linear_model

def Stacking_method(train_reg1,train_reg2,train_reg3,y_train_true
                    ,test_pre1,test_pre2,test_pre3
                    ,model_L2= linear_model.LinearRegression()):
    model_L2.fit(pd.concat([pd.Series(train_reg1)
                            ,pd.Series(train_reg2)
                            ,pd.Series(train_reg3)],axis=1).values,y_train_true)
    Stacking_result = model_L2.predict(pd.concat([pd.Series(test_pre1),pd.Series(test_pre2),pd.Series(test_pre3)],axis=1).values)
    return Stacking_result
    
## 生成一些简单的样本数据,test_prei 代表第i个模型的预测值
train_reg1 = [3.2, 8.2, 9.1, 5.2]
train_reg2 = [2.9, 8.1, 9.0, 4.9]
train_reg3 = [3.1, 7.9, 9.2, 5.0]
# y_test_true 代表第模型的真实值
y_train_true = [3, 8, 9, 5] 

test_pre1 = [1.2, 3.2, 2.1, 6.2]
test_pre2 = [0.9, 3.1, 2.0, 5.9]
test_pre3 = [1.1, 2.9, 2.2, 6.0]

# y_test_true 代表第模型的真实值
y_test_true = [1, 3, 2, 6] 

model_L2= linear_model.LinearRegression()
Stacking_pre = Stacking_method(train_reg1,train_reg2,train_reg3,y_train_true,
                               test_pre1,test_pre2,test_pre3,model_L2)
print('Stacking_pre MAE:',metrics.mean_absolute_error(y_test_true, Stacking_pre))

这样或许模型在测试集上的泛化能力会有一定的下降,因此现在的问题变成了如何降低再训练的过拟合性,这里我们一般有两种方法。
1、次级模型尽量选择简单的线性模型。
2、利用K折交叉验证。
K-折交叉验证: 训练:
在这里插入图片描述
预测:
在这里插入图片描述

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值