今天聊一聊redis常见的三种问题!
缓存击穿、缓存穿透、缓存雪崩。
什么是缓存击穿?如何解决呢?
缓存击穿是指一个Key非常热点,在不停的扛着大并发,大并发集中对这一个点进行访问,当这个Key在失效的瞬间,持续的大并发就穿破缓存,直接请求数据库,就像在一个完好无损的桶上凿开了一个洞。
如何解决缓存击穿呢?设置热点数据永远不过期。或者加上互斥锁就能搞定了。
使用互斥锁
业界比较常用的做法,是使用mutex。简单地来说,就是在缓存失效的时候(判断拿出来的值为空),不是立即去load db,而是先使用缓存工具的某些带成功操作返回值的操作(比如Redis的SETNX)去set一个mutex key,当操作返回成功时,再进行load db的操作并回设缓存;否则,就重试整个get缓存的方法。
永远不过期
这里的“永远不过期”包含两层意思:
(1) 从redis上看,确实没有设置过期时间,这就保证了,不会出现热点key过期问题,也就是“物理”不过期。
(2) 从功能上看,如果不过期,那不就成静态的了吗?所以我们把过期时间存在key对应的value里,如果发现要过期了,通过一个后台的异步线程进行缓存的构建,也就是“逻辑”过期
从实战看,这种方法对于性能非常友好,唯一不足的就是构建缓存时候,其余线程(非构建缓存的线程)可能访问的是老数据,但是对于一般的互联网功能来说这个还是可以忍受。
什么是缓存穿透?如何解决呢?
缓存穿透
是指查询一个根本不存在的数据,缓存层和存储层都不会命中,于是这个请求就可以随意访问数据库,这个就是缓存穿透,缓存穿透将导致不存在的数据每次请求都要到存储层去查询,失去了缓存保护后端存储的意义。
造成缓存穿透的基本原因有两个。
第一,自身业务代码或者数据出现问题,比如,我们数据库的 id 都是1开始自增上去的,如发起为id值为 -1 的数据或 id 为特别大不存在的数据。如果不对参数做校验,数据库id都是大于0的,我一直用小于0的参数去请求你,每次都能绕开Redis直接打到数据库,数据库也查不到,每次都这样,并发高点就容易崩掉了。
第二,一些恶意攻击、爬虫等造成大量空命中。
如何解决呢?
1.缓存空对象
当存储层不命中,到数据库查发现也没有命中,那么仍然将空对象保留到缓存层中,之后再访问这个数据将会从缓存中获取,这样就保护了后端数据源。不过空值做了缓存,意味着缓存层中存了更多的键,需要更多的内存空间(如果是攻击,问题更严重),比较有效的方法是针对这类数据设置一个较短的过期时间,让其自动剔除。
2.布隆过滤器拦截
在访问缓存层和存储层之前,将存在的key用布隆过滤器提前保存起来,做第一层拦截。例如:一个推荐系统有4亿个用户id,每个小时算法工程师会根据每个用户之前历史行为计算出推荐数据放到存储层中,但是最新的用户由于没有历史行为,就会发生缓存穿透的行为,为此可以将所有推荐数据的用户做成布隆过滤器。如果布隆过滤器认为该用户id不存在,那么就不会访问存储层,在一定程度保护了存储层。
什么是缓存雪崩?该如何解决呢?
缓存雪崩:由于缓存层承载着大量请求,有效地保护了存储层,但是如果缓存层由于某些原因不能提供服务,比如同一时间缓存数据大面积失效,那一瞬间Redis跟没有一样,于是所有的请求都会达到存储层,存储层的调用量会暴增,造成存储层也会级联宕机的情况。
缓存雪崩的英文原意是stampeding herd(奔逃的野牛),指的是缓存层宕掉后,流量会像奔逃的野牛一样,打向后端存储。
预防和解决缓存雪崩问题,可以从以下三个方面进行着手。
1)保证缓存层服务高可用性。和飞机都有多个引擎一样,如果缓存层设计成高可用的,即使个别节点、个别机器、甚至是机房宕掉,依然可以提供服务,例如前面介绍过的Redis
Sentinel和 Redis Cluster都实现了高可用。
2)依赖隔离组件为后端限流并降级。无论是缓存层还是存储层都会有出错的概率,可以将它们视同为资源。作为并发量较大的系统,假如有一个资源不可用,可能会造成线程全部阻塞(hang)在这个资源上,造成整个系统不可用。
3)提前演练。在项目上线前,演练缓存层宕掉后,应用以及后端的负载情况以及可能出现的问题,在此基础上做一些预案设定。4)将缓存失效时间分散开,比如我们可以在原有的失效时间基础上增加一个随机值,比如1-5分钟随机,这样每一个缓存的过期时间的重复率就会降低,就很难引发集体失效的事件。