PCL中用欧氏距离和法向量差异方法分离点云中的聚类Euclidean Clusters

本文介绍了如何在PCL中通过欧氏距离和法向量差异来分离点云聚类。首先展示了分离效果,接着详细解释了利用点间距离和法向量角度差异的聚类原理,并给出了点云降采样及聚类数量限制的重要性。最后,提供了实现这一方法的代码片段。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 效果图

分离后的聚类1(原点云中的桌面部分):
在这里插入图片描述

分离后的聚类2(原点云中的地面部分):
在这里插入图片描述

原始点云:
在这里插入图片描述

2. 原理

三个重点:1. 利用点与点的欧氏距离,如欧式距离小于10cm
2. 利用法向量之间的差异,如同一个聚类中的点法向量差异小于5度
3. 对聚类中点的数量进行限制,如大于500才能作为聚类
注意:一定要对点云进行降采样,比如体素降采样、均匀降采样等,将点云数量降低至1万个点左右,可以快速验证算法可行性。

3. 代码


                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ಥ_ಥLeerorz

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值