六、海量hive数据写入es优化

本文针对业务部门将600万条、每条包含2万个标签的Hive数据写入ES的场景进行优化。优化主要包括:在Hive端通过设置CombineHiveInputFormat减少map任务数,调整mapred.max.split.size等参数增大输入split大小;在ES端,从索引设计和数据写入层面进行优化,如调整线程数、队列数,并优化集群层面参数以应对大量数据写入时的网络带宽占用和心跳超时问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

场景:

业务部门将客户画像结果表通过hive映射到es表,其中结果表600W条数据,但每条数据接近2W个标签,数据入到es后主要场景是多字段组合过滤查询后聚合求和。

优化思路

es默认最大字段数是1000,需要增大字段数
hive端优化: hive的取数据的速度大于写入到es的速度,es会由于集群规模问题或者资源问题无法同时接收hive过多的并发数。 由此hive端主要优化是减小map数

  • set hive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat 将多个小文件打包作为一个整体的inputsplit,减少map任务数
  • set mapred.max.split.size=256000000;
    set mapred.min.split.size.per.node=256000000
    set Mapred.min.split.size.per.rack=256000000
    增大map输入split的大小

es端优化:主要分为索引设计层面和数据写入层面
#创建es索引 curl -u ${ESUser}:${ESPasswd} -X PUT -H "Content-Type: application/json" "http://${ESIP}:${ESPort}/${ESIndex}/" -d '{"settings":{"number_of_shards":10,"number_of_replicas": 0},"mappings":{'"cmfe_

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值