2025年6月即将发表于SCI一区Top顶级期刊《Knowledge-Based Systems》上的一种名为:不实野燕麦优化算法(AOO)的算法,用于解决复杂工程优化问题,首次实现了植物运动力学与优化算法的完美结合。相比传统算法收敛速度提升最高达40%。创新性极强非常简单且,目前还未有利用该改进策略的论文,赶紧码住!
动画燕麦优化算法(AOO)详解
不实野燕麦(Avena sterilis L.)是一种一年生草本植物,属于禾本科燕麦属。它的种子具有独特的传播机制,主要通过以下三种方式扩散:
- 自然传播
借助风、水或动物等外力随机扩散
- 吸湿滚动
种子主芒会随湿度变化产生扭曲旋转,使种子滚动
- 蓄能弹射
遇到障碍时会储存能量,在适当时机弹射出去
算法步骤超详解:
1. 初始化阶段 - "撒种子"
随机数上限下限下限
就像在田地里随机撒燕麦种子:
在搜索空间内随机生成N个解(种子位置) 每个解有dim个维度(比如x/y坐标) 保证种子均匀分布在整块"田地"里
2. 参数计算阶段 - "测量种子"
随机数维度种子重量随机数维度芒刺长度当前代总代数季节系数
相当于给每个种子做体检:
称重(m):越重的种子滚动惯性越大;
量芒刺(L):芒刺越长越容易卡住障碍物
季节(c):随着迭代进行,从生长季(c≈1)逐渐进入成熟季(c→0)
3. 探索阶段 - "随风传播"
风力季节随机扰动
新位置平均位置风力群体扩散最优种子风力向榜样靠拢原位置风力随机飘移
模拟自然界的三种传播方式:
群体扩散:像蒲公英集体随风飘散
向优靠拢:朝长得最好的那片区域飘
随机飘移:个别种子被阵风吹到随机位置
4. 探索阶段 - "自主运动"
4.1 无障碍滚动 - "芒刺驱动"
滚动距离重量偏心率芒刺²随机角度飞行
就像燕麦种子用芒刺"划水":
扭曲旋转:芒刺遇湿会扭曲旋转(偏心率e)类似偏心轮的机械滚动
Levy飞行:偶尔来个Levy飞行大跳(避免卡住)
4.2 有障碍弹射 - "蓄力爆发"
弹射距离弹性系数变形量²θ重量重力随机力度
相当于种子"愤怒的小鸟"式逃生:
遇到障碍时芒刺像弹簧般蓄能达到临界点突然释放,以θ角度弹射出去
5、 终止条件
当出现以下情况停止迭代:
达到最大代数(燕麦成熟)
最优解连续多代不变(种子找到最佳生长点)
解的精度达标
创新点:
① 植物运动仿生模型
首次将植物器官的被动机械运动转化为优化算子的主动搜索策略,相比动物群体算法:
-
滚动模型比PSO的"速度更新"更符合物理规律
-
弹射机制比GA的"突变"更具方向性
② 环境响应式双模切换
-
遇到停滞时自动触发弹射(类似"紧急逃生"机制)
-
通过障碍检测参数B动态调整搜索力度
-
相比传统算法的固定流程,更接近生物真实行为
② 非线性衰减能量系统
-
采用立方衰减而非线性衰减,实现:
-
前70%迭代保留强探索能力
-
后30%快速转入深度开发
-
-
能量系数c同时控制:
-
风力强度W
-
Levy飞行步长
-
弹射力度J
-
程序获取
关注公众号,免费获取,私信发送:AOO优化