同质集成:基学习器
异质集成:组建学习器
Boosting:串行学习,bias比较小
Bagging:并行学习,variance比较小
stacking:投票方法是学出来的,学:其实就是迭代,纠错,递归,
集成学习
一 wide(逻辑回归)&deep learning(深度学习)(Google):
wide:记忆性
Generalization:泛化性
平衡相关性和多样性
特征工程一定是层次化的
(从术悟道,从道建术)
1.1)Google colab:
https://colab.research.google.com/
google免费提供的计算环境(GPU),可以在上面训练自己的深度学习模型,需要翻墙。
可以用Google的云服务来下载数据,再拖到本地(免费)。
2)视频链接:https://www.youtube.com/watch?v=NV1tkZ9Lq48
3)Google机器学习免费课: