算法训练 开心的金明

关注微信公众号 CodeFun 更多题解

思路

状态转移方程如下:

  • d p [ i + 1 ] [ j ] dp[i+1][j] dp[i+1][j]从0到i这i+1个物品中选出总重量不超过j的物品时总价值的最大值
  • d p [ 0 ] [ j ] = 0 dp[0][j]=0 dp[0][j]=0

d p [ i + 1 ] [ j ] = { d p [ i ] [ j ] ( j < v [ i ] ) max ⁡ ( d p [ i ] [ j ] , d p [ i ] [ j − v [ i ] ] + v [ i ] × w [ i ] ) dp[i+1][j]=\left\{\begin{array}{ll} {d p[i][j]} & {(j<v[i])} \\ {\max (d p[i][j], d p[i][j-v[i]]+v[i]\times w[i] )} & {} \end{array}\right. dp[i+1][j]={dp[i][j]max(dp[i][j],dp[i][jv[i]]+v[i]×w[i])(j<v[i])

code

#include  <bits/stdc++.h>
using namespace std;
typedef long long ll;
ll dp[30][30010];
int v[30],w[30];
int main(){
    int n,m;
    cin>>n>>m;
    for(int i=0;i<m;i++) cin>>v[i]>>w[i];
    for(int i=0;i<m;i++)
        for(int j=0;j<=n;j++){
            if(j<v[i]) dp[i+1][j]=dp[i][j];
            else dp[i+1][j]=max(dp[i][j],dp[i][j-v[i]]+v[i]*w[i]);
        }
    cout<<dp[m][n]<<endl;
    return 0;
}
当然,下面是使用01背包算法解决P1060 开心金明问题的代码,并附有详细注释: ```cpp #include <iostream> #include <algorithm> using namespace std; const int MAXN = 33000; // 背包最大容量 int dp[MAXN]; // 动态规划数组,dp[i]表示容量为i时的最大价值 int main() { int n, m; // n表示物品个数,m表示背包容量 cin >> m >> n; for (int i = 0; i < n; i++) { int v, p; // v表示物品的体积,p表示物品的价值 cin >> v >> p; for (int j = m; j >= v; j--) { // 从后往前遍历背包容量,保证之前计算的dp[j-v]没有被覆盖 dp[j] = max(dp[j], dp[j - v] + v * p); // 更新当前容量下的最大价值 } } cout << dp[m] << endl; // 输出背包容量为m时的最大价值 return 0; } ``` 代码解释: 1. 首先,我们定义了常量MAXN表示背包的最大容量,并声明了一个长度为MAXN的dp数组,dp[i]表示容量为i时的最大价值。 2. 接下来,从输入中读取背包容量m和物品个数n。 3. 然后,使用一个循环遍历每个物品。在每次循环中,我们读取当前物品的体积v和价值p。 4. 接着,使用一个逆序的循环遍历背包容量j,从m到v。这样做是为了保证之前计算的dp[j-v]没有被覆盖。 5. 在内层循环中,我们更新dp[j]的值,将其更新为dp[j]和dp[j-v] + v * p的较大值。其中,dp[j]表示不选当前物品时的最大价值,dp[j-v] + v * p表示选择当前物品时的最大价值。 6. 最后,输出dp[m],即背包容量为m时的最大价值。 希望这个解释对你有帮助!如果还有其他问题,请随时提问。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值