sklearn(2)—— 决策树

1 概述

1.1 决策树是如何工作的

决策树(Decision Tree)是一种非参数的有监督学习方法,它能够从一系列有特征和标签的数据中总结出决策规则,并用树状图的结构来呈现这些规则,以解决分类和回归问题。决策树算法容易理解,适用各种数据,在解决各种问题时都有良好表现,尤其是以树模型为核心的各种集成算法,在各个行业和领域都有广泛的应用。

我们来简单了解一下决策树是如何工作的。决策树算法的本质是一种图结构,我们只需要问一系列问题就可以对数据进行分类了。比如说,来看看下面这组数据集,这是一系列已知物种以及所属类别的数据:
在这里插入图片描述
我们现在的目标是,将动物们分为哺乳类和非哺乳类。那根据已经收集到的数据,决策树算法为我们算出了下面的这棵决策树:
在这里插入图片描述

假如我们现在发现了一种新物种Python,它是冷血动物,体表带鳞片,并且不是胎生,我们就可以通过这棵决策树来判断它的所属类别。
可以看出,在这个决策过程中,我们一直在对记录的特征进行提问。最初的问题所在的地方叫做根节点,在得到结论前的每一个问题都是中间节点,而得到的每一个结论(动物的类别)都叫做叶子节点。

关键概念:节点

  • 根节点:没有进边,有出边。包含最初的,针对特征的提问。
  • 中间节点:既有进边也有出边,进边只有一条,出边可以有很多条。都是针对特征的提问。
  • 叶子节点:有进边,没有出边,每个叶子节点都是一个类别标签。
  • 子节点和父节点:在两个相连的节点中,更接近根节点的是父节点,另一个是子节点。

决策树算法的核心是要解决两个问题:

  1. 如何从数据表中找出最佳节点和最佳分枝?
  2. 如何让决策树停止生长,防止过拟合?

几乎所有决策树有关的模型调整方法,都围绕这两个问题展开。这两个问题背后的原理十分复杂,我们会在讲解模型参数和属性的时候为大家简单解释涉及到的部分。在这门课中,我会尽量避免让大家太过深入到决策树复杂的原理和数学公式中(尽管决策树的原理相比其他高级的算法来说是非常简单了),这门课会专注于实践和应用。如果大家希望理解更深入的细节,建议大家在听这门课之前还是先去阅读和学习一下决策树的原理。

1.2 sklearn中的决策树

模块sklearn.tree
sklearn中决策树的类都在”tree“这个模块之下。这个模块总共包含五个类:

tree.DecisionTreeClassifier 分类树
tree.DecisionTreeRegressor 回归树
tree.export_graphviz 将生成的决策树导出为DOT格式,画图专用
tree.ExtraTreeClassifier 高随机版本的分类树
tree.ExtraTreeRegressor 高随机版本的回归树

我们会主要讲解分类树和回归树,并用图像呈现给大家。

  • sklearn的基本建模流程

在那之前,我们先来了解一下sklearn建模的基本流程。
在这里插入图片描述

在这个流程下,分类树对应的代码是:

from sklearn import tree            # 导入需要的模块
clf = tree.DecisionTreeClassifier() # 实例化
clf = clf.fit()                     # 用训练集数据训练模型
result = clf.score()                # 导入测试集,从接口中调用需要的信息

回归树中二维数组,分类树中一维数组

2 DecisionTreeClassifier(分类树与红酒数据集)

class sklearn.tree.DecisionTreeClassifier (criterion=’gini’, splitter=’best’, max_depth=None,
min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None,
random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None,class_weight=None, presort=False)

2.1 重要参数

2.1.1 criterion

为了要将表格转化为一棵树,决策树需要找出最佳节点和最佳的分枝方法,对分类树来说,衡量这个“最佳”的指标叫做“不纯度”。通常来说,不纯度越低,决策树对训练集的拟合越好。现在使用的决策树算法在分枝方法上的核心大多是围绕在对某个不纯度相关指标的最优化上。

不纯度基于节点来计算,树中的每个节点都会有一个不纯度,并且子节点的不纯度一定是低于父节点的,也就是说,在同一棵决策树上,叶子节点的不纯度一定是最低的。

Criterion这个参数正是用来决定不纯度的计算方法的。sklearn提供了两种选择:
1)输入”entropy“,使用信息熵(Entropy)
2)输入”gini“,使用基尼系数(Gini Impurity)
在这里插入图片描述

其中t代表给定的节点,i代表标签的任意分类, p ( i ∣ t ) p(i|t) p(it)代表标签分类i在节点t上所占的比例。注意,当使用信息熵时,sklearn实际计算的是基于信息熵的信息增益(Information Gain),即父节点的信息熵和子节点的信息熵之差。比起基尼系数,信息熵对不纯度更加敏感,对不纯度的惩罚最强。但是在实际使用中,信息熵和基尼系数的效果基本相同。信息熵的计算比基尼系数缓慢一些,因为基尼系数的计算不涉及对数。另外,因为信息熵对不纯度更加敏感,所以信息熵作为指标时,决策树的生长会更加“精细”,因此对于高维数据或者噪音很多的数据,信息熵很容易过拟合,基尼系数在这种情况下效果往往比较好。当然,这不是绝对的。

参数 criterion
如何影响模型? 确定不纯度的计算方法,帮忙找出最佳节点和最佳分枝,不纯度越低,决策树对训练集的拟合越好
可能的输入有哪些? 不填默认基尼系数,填写gini使用基尼系数,填写entropy使用信息增益
怎样选取参数? 通常就使用基尼系数数据维度很大,噪音很大时使用基尼系数
维度低,数据比较清晰的时候,信息熵和基尼系数没区别,
当决策树的拟合程度不够的时候,使用信息熵
两个都试试,不好就换另外一个

到这里,决策树的基本流程其实可以简单概括如下:
在这里插入图片描述

直到没有更多的特征可用,或整体的不纯度指标已经最优,决策树就会停止生长。

  • 建立一棵树
  1. 导入需要的算法库和模块
# 1.导入需要的算法库和模块
from sklearn import tree
from sklearn.datasets import load_wine
from sklearn.model_selection import train_test_split
  1. 探索数据
# 2.探索数据
wine = load_wine()
wine.data.shape # (178, 13)
wine.target
'''
输出
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2,
       2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
       2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
       2, 2])
'''

如果wine是一张表,应该是这样(结果如下图所示)

# 如果wine是一张表,应该是这样
import pandas as pd
pd.concat([pd.DataFrame(wine.data),pd.DataFrame(wine.target)],axis=1)

在这里插入图片描述

wine.feature_names
'''
输出
['alcohol',
 'malic_acid',
 'ash',
 'alcalinity_of_ash',
 'magnesium',
 'total_phenols',
 'flavanoids',
 'nonflavanoid_phenols',
 'proanthocyanins',
 'color_intensity',
 'hue',
 'od280/od315_of_diluted_wines',
 'proline']
'''
wine.target_names
'''
输出
array(['class_0', 'class_1', 'class_2'], dtype='<U7')
'''
  1. 分训练集和测试集
# 3.分训练集和测试集
# test_size=0.3 表示30%做测试集,70%做训练集
Xtrain,Xtest,Ytrain,Ytest = train_test_split(wine.data,wine.target,test_size=0.3)

Xtrain.shape
'''
输出
(124, 13)
'''
Xtest.shape
'''
输出
(54, 13)
'''
  1. 建立模型
# 4. 建立模型
clf = tree.DecisionTreeClassifier(criterion="entropy")
clf = clf.fit(Xtrain,Ytrain)
score = clf.score(Xtest,Ytest) # 返回预测的准确度

score
'''
输出
0.8333333333333334
'''
  1. 画出一棵树
# 5.画出一棵树
feature_name = ['酒精','苹果酸','灰','灰的碱性','镁','总酚','类黄酮','非黄烷类酚类','花青素','颜色强度','色调','od280/od315稀释葡萄酒','脯氨酸']

import graphviz
dot_data = tree.export_graphviz(clf,
                                feature_names=feature_name,
                                class_names=["琴酒","雪莉","贝尔摩德"],
                                filled=True,
                                rounded=True
                                )
graph = graphviz.Source(dot_data)
graph
'''
输出
如下图所示
'''

在这里插入图片描述
6. 探索决策树

# 6.探索决策树

# 特征重要性
clf.feature_importances_
'''
输出
array([0.        , 0.03472593, 0.02222161, 0.        , 0.        ,
       0.        , 0.44246035, 0.        , 0.        , 0.        ,
       0.        , 0.08561031, 0.41498181])
'''
[*zip(feature_name,clf.feature_importances_)]
'''
输出
[*zip(feature_name,clf.feature_importances_)]

[('酒精', 0.0),
 ('苹果酸', 0.03472592550375031),
 ('灰', 0.022221605749800283),
 ('灰的碱性', 0.0),
 ('镁', 0.0),
 ('总酚', 0.0),
 ('类黄酮', 0.44246034690442393),
 ('非黄烷类酚类', 0.0),
 ('花青素', 0.0),
 ('颜色强度', 0.0),
 ('色调', 0.0),
 ('od280/od315稀释葡萄酒', 0.08561031480649588),
 ('脯氨酸', 0.41498180703552967)]
'''

我们已经在只了解一个参数的情况下,建立了一棵完整的决策树。但是回到步骤4建立模型,score会在某个值附近波动,引起步骤5中画出来的每一棵树都不一样。它为什么会不稳定呢?如果使用其他数据集,它还会不稳定吗?我们之前提到过,无论决策树模型如何进化,在分枝上的本质都还是追求某个不纯度相关的指标的优化,而正如我们提到的,不纯度是基于节点来计算的,也就是说,决策树在建树时,是靠优化节点来追求一棵优化的树,但最优的节点能够保证最优的树吗?集成算法被用来解决这个问题:sklearn表示,既然一棵树不能保证最优,那就建更多的不同的树,然后从中取最好的。怎样从一组数据集中建不同的树?在每次分枝时,不从使用全部特征,而是随机选取一部分特征,从中选取不纯度相关指标最优的作为分枝用的节点。这样,每次生成的树也就不同了。

# random_state代表随机模式的参数
clf = tree.DecisionTreeClassifier(criterion="entropy",random_state=30)
clf = clf.fit(Xtrain,Ytrain)
score = clf.score(Xtest,Ytest) # 返回预测的准确度

score
'''
输出
0.9444444444444444
'''
2.1.2 random_state & splitter

random_state用来设置分枝中的随机模式的参数,默认None,在高维度时随机性会表现更明显,低维度的数据(比如鸢尾花数据集),随机性几乎不会显现。输入任意整数,会一直长出同一棵树,让模型稳定下来。

splitter也是用来控制决策树中的随机选项的,有两种输入值,输入”best",决策树在分枝时虽然随机,但是还是会优先选择更重要的特征进行分枝(重要性可以通过属性feature_importances_查看),输入“random",决策树在分枝时会更加随机,树会因为含有更多的不必要信息而更深更大,并因这些不必要信息而降低对训练集的拟合。这也是防止过拟合的一种方式。当你预测到你的模型会过拟合,用这两个参数来帮助你降低树建成之后过拟合的可能性。当然,树一旦建成,我们依然是使用剪枝参数来防止过拟合。

clf = tree.DecisionTreeClassifier(criterion="entropy"
                                  ,random_state=30
                                  ,splitter="random"
                                 )
clf = clf.fit(Xtrain,Ytrain)
score = clf.score(Xtest,Ytest) # 返回预测的准确度
score
'''
输出:0.9814814814814815
'''
dot_data = tree.export_graphviz(clf
                                ,feature_names=feature_name
                                ,class_names=["琴酒","雪莉","贝尔摩德"]
                                ,filled=True
                                ,rounded=True
                                )
graph = graphviz.Source(dot_data)
graph
'''
输出:如下图所示
'''

在这里插入图片描述

2.1.3 剪枝参数

在不加限制的情况下,一棵决策树会生长到衡量不纯度的指标最优,或者没有更多的特征可用为止。这样的决策树往往会过拟合,这就是说,它会在训练集上表现很好,在测试集上却表现糟糕。我们收集的样本数据不可能和整体的状况完全一致,因此当一棵决策树对训练数据有了过于优秀的解释性,它找出的规则必然包含了训练样本中的噪声,并使它对未知数据的拟合程度不足。

# 我们的树对训练集的拟合程度如何:

score_train = clf.score(Xtrain,Ytrain)
score_train
'''
输出:1.0
'''
# 我们的树对测试集的拟合程度如何:

score_te
  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值