介绍
二分查找又称折半查找,效率较高,时间复杂度是 O(logn)。但要求线性表必须采用顺序存储结构,而且表中元素按关键字有序(非严格)排列。
题目
704.二分查找
给定一个 n 个元素有序的(升序)整型数组 nums 和一个目标值 target ,写一个函数搜索 nums 中的 target,如果目标值存在返回下标,否则返回 -1。
class Solution {
public:
int search(vector<int>& nums, int target) {
int left = 0, right = nums.size()-1;
while(left <= right) {
int mid = (right + left) / 2;
if (nums[mid] == target) return mid;
else if (nums[mid] < target) left = mid + 1;
else right = mid - 1;
}
return -1;
}
};
其中,int mid = (right +left) / 2
可能出现整型溢出的问题,可将其修改为int mid = (right - left) / 2 + left
。
35.搜索插入位置
给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。
class Solution {
public:
int searchInsert(vector<int>& nums, int target) {
int left = 0, right = nums.size() - 1;
while(left <= right) {
int mid = (left + right) / 2;
if (nums[mid] == target) return mid;
else if (nums[mid] < target) left = mid + 1;
else right = mid -1;
}
return left;
}
};
这个题目要求可拆分为两部分:一是查找,如果在原数组中查找到目标元素,返回目标元素在数组的索引;二是插入,如果“查无此人”,则在元素组中插入目标元素,并保证数组的排列顺序。
查找采用二分查找,查找的任务就完成了。如果目标元素不存在于原数组,那么最终left
与right
会收敛到left=right+1
下,所以在“查无此人”的情况下,left
即按顺序插入的位置,所以return left
即可。
69. x 的平方根
给你一个非负整数 x ,计算并返回 x 的 算术平方根 。由于返回类型是整数,结果只保留整数部分 ,小数部分将被舍去 。
class Solution {
public:
int mySqrt(int x) {
int left = 0, right = x;
while (left <= right) {
long long int mid = (left + right) / 2;
if (mid*mid == x) return mid;
else if (mid*mid < x) left = mid + 1;
else right = mid -1 ;
}
return right;
}
};
如果x
恰好为完全平方数,return mid
;如果非完全平方数,需要取整,那么return right
即可。
367. 有效的完全平方数
给定一个 正整数 num ,编写一个函数,如果 num 是一个完全平方数,则返回 true ,否则返回 false 。
class Solution {
public:
bool isPerfectSquare(int num) {
int left = 0, right = num;
while (left <= right) {
int mid = (right + left) / 2;
if ((long long) mid*mid == num) return 1;
else if ((long long) mid*mid < num) left = mid + 1;
else right = mid -1 ;
}
return 0;
}
};
思路同69题。