基于深度学习方法实现SPECT放射性核素定量测量(二)

基于深度学习方法实现SPECT放射性核素定量测量(二)—GATE仿真

(1)GATE介绍

GATE(GEANT4 Application for Emission Tomography)由OpenGATE组织开发,是一个基于GEANT4的软件包。它封装了GEANT4库,是一个专用于核医学领域的免费开源、通用性、脚本化、模块化的仿真平台。GATE继承了GEANT4仿真工具包的优势,其中包括经过验证的物理模型、复杂几何的描述、强大的可视化功能和3D渲染工具等,并且具有发射断层成像特有的功能。GATE软件的架构可由图1所示的层级结构表示,以GEANT4为内核(GEANT4 kernel),由核心层(Core layer)、应用层(Application layer)以及用户层(User level)组成。

在这里插入图片描述

图1:GATE层级结构

GATE仿真步骤由图2所示,包括设计探测器几何结构、设置体模参数、设置物理过程、初始化、设置电子学参数、设置放射源、设置随机数以及定义数据输出格式、开始仿真。在仿真中针对各步骤编写GATE宏语言,通过可视化检查探测器结构,最后通过主文件调用各模块代码执行程序。其中设置探测器结构、物理过程、电子学参数和放射源设置是GATE仿真重点。本课题仿真过程基于GATE9.0版本(目前最新版本貌似为9.1),在linux系统下实现,并且采用多线程并行计算加快仿真速度,缩短仿真时长。

在这里插入图片描述

图2:GATE仿真过程

GATE具体使用说明可以参考官方说明:http://opengatecollaboration.org/

(2)设置探测器

仿真探测器设置以西门子公司Symbia T2型双探头SPECT/CT系统为原型,构建SPECT系统结构。使用SPECTHead系统作为探测器几何结构的模板,自上而下定义的几何结构分别为:World、SPECTHead、 Shielding、Collimator、Scintillator、Back Compartment,然后需要将Scintillator通过attach命令将其连接到CrystalSD层次,使Scintillator具备记录粒子与物质相互作用信息的功能。定义的SPECTHead系统结构如图3所示。设置探测器选择360度,为了加快仿真速度,可以使用四个探头,每个探头只需选择90度即可,如图4所示。各结构材料如表1所示。

在这里插入图片描述

图3:SPECT探测器简图1

在这里插入图片描述
图4:SPECT探测器简图2

表1

在这里插入图片描述

探测器设置的代码如下所示:

# V I S U A L I S A T I O N
#####
/vis/disable

# M A N D A T O R Y
#####
/gate/geometry/setMaterialDatabase GateMaterials.db
# G E O M E T R Y
#####

# World
# Define the world dimensions
##
/gate/world/geometry/setXLength 100 cm
/gate/world/geometry/setYLength 100 cm
/gate/world/geometry/setZLength 100 cm

# Scanner Head
# Create a new box representing the main head-volume
# SPECThead is the name of the predefined SPECT system
# Create the SPECT system, which will yield an Interfile output of projection data
##
/gate/world/daughters/name SPECThead
/gate/world/daughters/insert box
/gate/SPECThead/geometry/setXLength  7. cm
/gate/SPECThead/geometry/setYLength 21. cm
/gate/SPECThead/geometry/setZLength 30. cm
/gate/SPECThead/placement/setTranslation  0. 25. 0. cm
/gate/SPECThead/placement/setRotationAxis 0 0 1
/gate/SPECThead/placement/setRotationAngle 90 deg
/gate/SPECThead/repeaters/insert ring
/gate/SPECThead/ring/setRepeatNumber 4
/gate/SPECThead/setMaterial Air
/gate/SPECThead/moves/insert orbiting
#/gate/SPECThead/orbiting/setSpeed 2.8125 deg/s
/gate/SPECThead/orbiting/setSpeed 1.40625 deg/s
#/gate/SPECThead/orbiting/setSpeed 0.703125 deg/s
/gate/SPECThead/orbiting/setPoint1 0 0 0 cm
/gate/SPECThead/orbiting/setPoint2 0 0 1 cm
/gate/SPECThead/vis/forceWireframe

# Shielding
# Create the shielding volume
##
/gate/SPECThead/daughters/name shielding
/gate/SPECThead/daughters/insert box
/gate/shielding/geometry/setXLength  7. cm
/gate/shielding/geometry/setYLength 21. cm
/gate/shielding/geometry/setZLength 30. cm
/gate/shielding/plac
基于深度学习的超分辨率SPECT(单光子发射计算机断层扫描)图像重建算法的核心模型架构通常包括以下几个关键部分: 1. **输入层**:接收低分辨率的SPECT图像数据。这些数据通常是多维的,包括空间信息和时间信息。 2. **特征提取层**:使用卷积神经网络(CNN)来提取图像的低级和高级特征。CNN通过多层卷积和池化操作,逐步提取图像的特征。 3. **上采样层**:通过反卷积(转置卷积)或上采样操作,将特征图的空间分辨率提高。这一步是为了生成高分辨率的图像。 4. **重建层**:使用残差网络(ResNet)或密集连接网络(DenseNet)等结构,进一步细化图像细节。这些结构通过跳跃连接(skip connections)将低层特征与高层特征结合起来,保留更多的细节信息。 5. **输出层**:生成高分辨率的SPECT图像。输出层通常是一个卷积层,将特征图转换为最终的图像。 6. **损失函数**:用于衡量重建图像与真实图像之间的差异。常用的损失函数包括均方误差(MSE)、结构相似性指数(SSIM)和感知损失(perceptual loss)等。 7. **优化器**:用于更新模型参数,使得损失函数最小化。常用的优化器包括Adam、SGD等。 以下是一个简化的架构图: ``` 输入层 | 卷积层(特征提取) | 池化层 | 卷积层 | 上采样层 | 残差网络(ResNet) | 跳跃连接 | 卷积层 | 输出层 ``` 这个架构图展示了从输入的低分辨率图像到输出高分辨率图像的整个过程,通过多层卷积、上采样和残差网络等操作,逐步提高图像的分辨率和细节。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值