Tensorflow2.0学习笔记-数据集读入

鸢尾花数据集读入

iris数据集中储存了鸢尾花花的,花萼长度宽度,花瓣长度宽度。以下函数加数据集中以链表形式存在的数据转换成表格进行输出。

from sklearn import datasets
from pandas import DataFrame
import pandas as pd

x_data = datasets.load_iris().data  # .data返回iris数据集中的所有输入特征
y_data = datasets.load_iris().target  # .target返回iris数据集中的所有标签
print("x_date from datasets:\n", x_data)
print("y_date from datasets:\n", y_data)

x_data = DataFrame(x_data, columns=['花萼长度', '花萼宽度', '花瓣长度', '花瓣宽度'])  # 为每一列增加中文标签
pd.set_option('display.unicode.east_asian_width', True)  # 设置列对齐
print("x_data add index: \n", x_data)

x_data['类别'] = y_data
print("x_data add a column: \n", x_data)

输出表格形式

x_data add index: 
      花萼长度  花萼宽度  花瓣长度  花瓣宽度
0         5.1       3.5       1.4       0.2
1         4.9       3.0       1.4       0.2
2         4.7       3.2       1.3       0.2
3         4.6       3.1       1.5       0.2
....

x_data add a column: 
      花萼长度  花萼宽度  花瓣长度  花瓣宽度  类别
0         5.1       3.5       1.4       0.2     0
1         4.9       3.0       1.4       0.2     0
2         4.7       3.2       1.3       0.2     0
3         4.6       3.1       1.5       0.2     0
4         5.0       3.6       1.4       0.2     0
..        ...       ...       ...       ...   ...

pd.set_option()常用函数:

pd.set_option('display.unicode.ambiguous_as_wide', True)  # 设置列名对齐
pd.set_option('display.unicode.east_asian_width', True)  # 设置列名对齐
pd.set_option('display.max_rows',None)   # 显示所有行
pd.set_option('display.max_columns',None)  # 显示所有列
pd.set_option('expand_frame_repr', False  )  # 设置不换行
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,我会尽力回答你的问题。对于您的问题,我理解您想问我如何调用U-NET模型,以下是我给出的回答。 首先,U-NET模型是一个用于图像分割的深度学习模型,它使用卷积神经网络来学习图像中不同区域的特征,并将它们分割成不同的类别。在TensorFlow 2.0中,我们可以使用tf.keras API来实现U-NET模型。 以下是一个简单的U-NET模型的实现代码: ```python import tensorflow as tf from tensorflow.keras.layers import * def conv_block(inputs, filters, kernel_size=(3, 3), activation='relu', padding='same'): x = Conv2D(filters, kernel_size, activation=activation, padding=padding)(inputs) x = BatchNormalization()(x) x = Conv2D(filters, kernel_size, activation=activation, padding=padding)(x) x = BatchNormalization()(x) return x def unet(input_shape=(256, 256, 3)): inputs = Input(shape=input_shape) c1 = conv_block(inputs, 64) p1 = MaxPooling2D((2, 2))(c1) c2 = conv_block(p1, 128) p2 = MaxPooling2D((2, 2))(c2) c3 = conv_block(p2, 256) p3 = MaxPooling2D((2, 2))(c3) c4 = conv_block(p3, 512) p4 = MaxPooling2D((2, 2))(c4) c5 = conv_block(p4, 1024) u6 = Conv2DTranspose(512, (2, 2), strides=(2, 2), padding='same')(c5) u6 = concatenate([u6, c4]) c6 = conv_block(u6, 512) u7 = Conv2DTranspose(256, (2, 2), strides=(2, 2), padding='same')(c6) u7 = concatenate([u7, c3]) c7 = conv_block(u7, 256) u8 = Conv2DTranspose(128, (2, 2), strides=(2, 2), padding='same')(c7) u8 = concatenate([u8, c2]) c8 = conv_block(u8, 128) u9 = Conv2DTranspose(64, (2, 2), strides=(2, 2), padding='same')(c8) u9 = concatenate([u9, c1]) c9 = conv_block(u9, 64) outputs = Conv2D(1, (1, 1), activation='sigmoid')(c9) model = tf.keras.Model(inputs=[inputs], outputs=[outputs]) return model ``` 在这个实现中,我们使用了Conv2D、BatchNormalization、MaxPooling2D和Conv2DTranspose等层来构建U-NET模型。我们还定义了一个conv_block函数来简化代码。 使用这个实现代码,我们可以通过以下方式调用U-NET模型: ```python model = unet() ``` 这将返回一个U-NET模型的实例,我们可以使用该实例来进行训练和预测。 希望这个回答对您有所帮助。如果您还有其他问题,请随时问我。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值