TensorFlow(2)-tf.data.Dataset训练数据集构建

1. tf.data.Dataset

参考Google官方给出的Dataset API中的类图,Dataset 务于数据读取,构建输入数据的pipeline。在这里插入图片描述
Dataset可以看作是相同类型“元素”的有序列表,可使用Iterator迭代获取Dataset中的元素。

2. dataset 创建数据集的方式

2.1 tf.data.Dataset.from_tensor_slices()

从tensor中创建数据集,数据集元素以tensor第一维度为划分。

import tensorflow as tf
import numpy as np
# 切分传入Tensor的第一个维度,生成相应的dataset。
dataset1 = tf.data.Dataset.from_tensor_slices(np.array([1.0, 2.0, 3.0, 4.0, 5.0])) 
# 如果传入字典,那切分结果就是字典按值切分,元素型如{"a":[1],"b":[x,x]}
dataset2 = tf.data.Dataset.from_tensor_slices(
    {
        "a": np.array([1.0, 2.0, 3.0, 4.0, 5.0]),                                       
        "b": np.random.uniform(size=(5, 2))
    }
)

2.2 tf.data.TextLineDataset()

读取文件数据创建数据集,数据集元素为文件的每一行

2.3 tf.data.FixedLengthRecordDataset()

从一个文件列表和record_bytes中创建数据集,数据集元素是文件中固定字节数record_bytes的内容。

2.4 tf.data.TFRecordDataset()

读TFRecord文件创建数据集,数据集中的一条数据是一个TFExample。

dataset = tf.data.TFRecordDataset(filenames = [tfrecord_file_name]) # [tfrecord_file_name] tfrecord 文件列表

frecord 文件中的特征一般都经过tf.train.Example 序列化,在使用前需要先解码tf.train.Example.FromString()

raw_example = next(iter(dataset))
parsed = tf.train.Example.FromString(raw_example.numpy())

3. dateset 迭代操作iterator

iterator是从Dataset对象中创建出来的,用于迭代取数据集中的元素。

3.1 make_one_shot_iterator()

dataset.make_one_shot_iterator()–只能从头到尾读取一次dataset。如果一个dataset中元素被读取完了再sess.run()的话,会抛出tf.errors.OutOfRangeError异常。因此可以在外界捕捉这个异常以判断数据是否读取完。

import tensorflow as tf
import numpy as np
# 切分传入Tensor的第一个维度,生成相应的dataset。如果传入字典,那切分结果就是字典按值切分
dataset = tf.data.Dataset.from_tensor_slices(np.array([1.0, 2.0, 3.0, 4.0, 5.0])) 
iterator = dataset.make_one_shot_iterator()    # 只能从头到尾读取一次
one_element = iterator.get_next()              # 从iterator里取出一个元素。
# 处于非Eager模式,所以one_element只是一个Tensor,并不是一个实际的值。调用sess.run(one_element)后,才能真正地取出一个值。
with tf.Session() as sess:
    try:
        while True:
            print(sess.run(one_element))

    except tf.errors.OutOfRangeError:
        print("end!")   

3.2 make_initializable_iterator()

dataset.make_initializable_iterator()–支持placeholder dataset 的迭代操作,这可以方便通过参数快速定义新的Iterator。

 # limit相当于一个参数,它规定了Dataset中数的上限, 使用make_initializable_iterator
limit = tf.placeholder(dtype=tf.int32, shape=[])
dataset = tf.data.Dataset.from_tensor_slices(tf.range(start=0, limit=limit))
iterator = dataset.make_initializable_iterator()
next_element = iterator.get_next()  
with tf.Session() as sess:
    sess.run(iterator.initializer, feed_dict={limit: 10})
    for i in range(10):
      value = sess.run(next_element)
      assert i == value

sess.run(next_element) 每run一次, 数据迭代器指针就会往下移动一个。TF官网学习(9)–使用iterator注意事项

如果在dataset的构建时,一次性读入了所有的数据,会导致计算图变得很大,给传输、保存带来不便。make_initializable_iterator()支持placeholder 操作,仅在需要传输数据时再取数据。

# 从硬盘中读入两个Numpy数组
with np.load("/var/data/training_data.npy") as data:
  features = data["features"]
  labels = data["labels"]

features_placeholder = tf.placeholder(features.dtype, features.shape)
labels_placeholder = tf.placeholder(labels.dtype, labels.shape)

dataset = tf.data.Dataset.from_tensor_slices((features_placeholder, labels_placeholder))
iterator = dataset.make_initializable_iterator()
sess.run(iterator.initializer, feed_dict={features_placeholder: features,
                                          labels_placeholder: labels})

3.3 reinitializable iterator()

dataset.reinitializable iterator() --待补

3.4 feedable iterator()

dataset.feedable iterator()–待补

4. dataset的map、batch、shuffle、repeat操作

map–接收一个函数,Dataset中的每个元素都会被当作这个函数的输入,并将函数返回值作为新的Dataset。

dataset = tf.data.Dataset.from_tensor_slices(np.array([1.0, 2.0, 3.0, 4.0, 5.0]))
dataset = dataset.map(lambda x: x + 1) # 2.0, 3.0, 4.0, 5.0, 6.0

batch–将多个元素组合成一个batch

dataset = dataset.batch(16)    # 将数据集划分为batch size为16的小批次

shuffle– 打乱dataset中的元素,参数buffersize。打乱的实现机理:从buffer_size 大小的部buffer中随机抽取元素,组成打乱后的数据集。buffer中被抽走的元素由原数据集中的后续元素补位置。 重复‘抽取-补充’这个过程,直至buffer为空。
会在batch之间打乱数据–疑问多tfrecord 文件是一次性构建数据集还是一条一条的构建

buffer_size 的大小详见tf.data.Dataset.shuffle(buffer_size)中buffer_size的理解

dataset = dataset.shuffle(buffer_size=10000)

repeat– 将整个序列重复多次,用来处理机器学习中的epoch,假设原始数据是一个epoch,使用repeat(5)就可以将之变成5个epoch

dataset = dataset.repeat(5)

5. 非eager/eager 模式

5.1 非eager模式demo

在非Eager模式下,Dataset中读出的一个元素一般对应一个batch的Tensor,我们可以使用这个Tensor在计算图中构建模型。

import tensorflow as tf
import numpy as np
# 切分传入Tensor的第一个维度,生成相应的dataset。如果传入字典,那切分结果就是字典按值切分
dataset = tf.data.Dataset.from_tensor_slices(np.array([1.0, 2.0, 3.0, 4.0, 5.0])) 
iterator = dataset.make_one_shot_iterator()    # 只能从头到尾读取一次
one_element = iterator.get_next()              # 从iterator里取出一个元素。
# 处于非Eager模式,所以one_element只是一个Tensor,并不是一个实际的值。调用sess.run(one_element)后,才能真正地取出一个值。
with tf.Session() as sess:
    try:
        while True:
            print(sess.run(one_element))

    except tf.errors.OutOfRangeError:
        print("end!")   

5.2 eager模式demo

在Eager模式下,Dataset建立Iterator的方式有所不同,此时通过读出的数据就是含有值的Tensor,方便调试。

import tensorflow.contrib.eager as tfe
tfe.enable_eager_execution()
dataset = tf.data.Dataset.from_tensor_slices(np.array([1.0, 2.0, 3.0, 4.0, 5.0]))
for one_element in tfe.Iterator(dataset):
    print(one_element)             # 可直接读取数据

参考文献:TensorFlow全新的数据读取方式:Dataset API入门教程


参考资源链接:[TensorFlow数据处理:tf.data.Dataset.map与interleave详解](https://wenku.csdn.net/doc/3h7kd5h20w?utm_source=wenku_answer2doc_content)TensorFlow中,高效地处理和加载数据是构建机器学习模型的关键步骤。为了深入理解并应用数据预处理和并行数据加载的技术,建议参考《TensorFlow数据处理:tf.data.Dataset.map与interleave详解》一书。它详细讲解了如何使用`map`和`interleave`这两个操作来提升数据处理的效率和模型训练的速度。 使用`map`操作,你可以对数据集中的每个元素应用一个转换函数,这在进行数据预处理时非常有用。例如,如果数据需要归一化,你可以创建一个归一化函数并应用到整个数据集上: ```python def normalize(image, label): image = tf.cast(image, tf.float32) / 255.0 return image, label # 加载数据集 train_ds = tf.data.Dataset.from_tensor_slices((images, labels)) # 应用map进行数据预处理 train_ds = train_ds.map(normalize) ``` 在这个例子中,我们定义了一个`normalize`函数,用于将图像数据归一化到0-1的范围内,然后使用`map`方法将这个函数应用到数据集中的每一对图像和标签上。 另一方面,`interleave`操作用于并行地从多个源加载数据,这在处理不同文件或不同数据集时尤其有效。使用`interleave`可以在多个数据源之间交错执行,从而利用多个核心来加速数据加载过程。例如,如果你有多个数据文件需要并行读取,可以这样做: ```python filenames = tf.constant([ 参考资源链接:[TensorFlow数据处理:tf.data.Dataset.map与interleave详解](https://wenku.csdn.net/doc/3h7kd5h20w?utm_source=wenku_answer2doc_content)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值