(python version) 劍指offer 42. 连续子数组的最大和

题目描述

输入一个整型数组,数组里有正数也有负数。数组中的一个或连续多个整数组成一个子数组。求所有子数组的和的最大值。
要求时间复杂度为O(n)。
來源:力扣(LeetCode)
在这里插入图片描述

解题思路

  • 由于最大 连续子数组和为不固定长度,且时间复杂度要求在 O(N) 内完成。因此在 nums 中每一个数字进入时,尙未加入当前数字前,需要写条件进行判断:
  1. 若前面累加之 res 为负数的话,则 res 更新为当前数字 nums[i] 。等同于 res 重新计算加总 => 从 nums[i] 开始计算是因 nums[i] 的数值 + 负值,将会比当前 nums[i] 更小。
  2. 每次循环的结尾,更新 res += nums[i]
  3. 每次循环的结尾,更新 max_res 的数值 => res 与 max_res 比较。
  • 测试案例

nums = [-2,1,-3,4,-1,2,1,-5,4]
nums = [-2, -1]
nums = [-1,-2]
nums = [1,-2,0]
nums = [-1, 0, -2]
nums = [31,-41,59,26,-53,58,97,-93,-23,84]

Python 代码

class Solution:
    def maxSubArray(self, nums: List[int]) -> int:
        if not nums:
            return None

        res = nums[0]
        if len(nums) == 1:
            return res
        
        max_res = res
        for i in range(1,len(nums)):
            if res < 0:
                res = nums[i]
            else:
                res += nums[i]
            max_res = max(max_res, res)

        return max_res
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值