最大连续子序列求和问题

最大连续子序列求和问题如下:

给定一个序列:A1,A2,A3......An,求i,j(1<=i<=j<=n),使得Ai+.....+Aj最大,输出这个最大值的和。

例:

输入 -2 11 -4 13 -5 -2 

显而易见11+(-4)+13=20为最大值,因此此时的最大值为20。

采用暴力法复杂度为O(n^{3}),对于较大的序列来说,显然是无法承受的。

采用动态规划的方法进行编写代码,复杂度会降低到O(n),下面介绍一下具体的方法和代码。

步骤1:令状态dp[i]表示以A[i]作为末尾的连续序列的最大值,同样以序列 -2 11 -4 13 -5 -2 为例,那么:

dp[0]=-2
dp[1]=11
dp[2]=11+(-4)=7
dp[3]=(7+13)=20
dp[4]=20+(-5)=15
dp[5]=15+(-2)=13

所以,只需要求解dp数组的最大值即可。

步骤2:

分析:因为dp[i]是以A[i]为末尾的连续序列,那么有且只有两种情况:

  1. 这个最大连续序列只有A[i],即A[i]以前的序列和小于0;
  2. 这个最大连续序列包括A[i];

于是可以得到状态转移方程:

dp[i]=max{A[i],dp[i-1]+A[i]} 

因此很容易写出代码如下:

#include<cstdio>
#include<algorithm>
#include<iostream>
using namespace std;
const int maxn = 100;
int main()
{
	int A[maxn], dp[maxn];   //定义序列A[i]和状态数组dp 
	int n;
	cin >> n;
	for (int i = 0; i < n; i++)     //输入数组 
	{
		cin >> A[i];
	}
	dp[0] = A[0];              //初始状态 
	for (int i = 1; i < n; i++)
	{
		dp[i] = max(A[i], dp[i - 1] + A[i]);  //状态转移方程 
	}
	sort(dp, dp + n);
	cout << dp[n - 1];      //输出最大值 
}

以上面例子为基础,进行简单的修改:

题目描述

给定K个整数的序列{ N1, N2, ..., NK },其任意连续子序列可表示为{ Ni, Ni+1, ..., Nj },其中 1 <= i <= j <= K。最大连续子序列是所有连续子序列中元素和最大的一个,例如给定序列{ -2, 11, -4, 13, -5, -2 },其最大连续子序列为{ 11, -4, 13 },最大和为20。现在增加一个要求,即还需要输出该子序列的第一个和最后一个元素。

输入

测试输入包含若干测试用例,每个测试用例占2行,第1行给出正整数K( K<= 10000 ),第2行给出K个整数,中间用空格分隔,每个数的绝对值不超过100。当K为0时,输入结束,该用例不被处理。

输出

对每个测试用例,在1行里输出最大和、最大连续子序列的第一个和最后一个元素,中间用空格分隔。如果最大连续子序列不唯一,则输出序号i和j最小的那个(如输入样例的第2、3组)。若所有K个元素都是负数,则定义其最大和为0,输出整个序列的首尾元素。

样例输入

5
-3 9 -2 5 -4
3
-2 -3 -1
0

样例输出

12 9 5
0 -2 -1

代码如下:

#include<cstdio>
#include<algorithm>
#include<iostream>
using namespace std;
const int maxn = 1001;
struct dp
{
	int data;   //记录dp[i]的数值部分 
	int star;   //记录起始下标 
	int end;	//记录结束下标 
}DP[maxn]; //定义结构体 
int A[maxn];
// 初始化 
void init()
{
	for (int i = 0; i < maxn; i++)
	{
		DP[i].data = 0;
		DP[i].star = 0;
		DP[i].end = 0;
	}
}
int main()
{
	int n;
	while (scanf("%d", &n) != 0)
	{

		init();         //初始化 
		int flag = 0;     //记录录入的数组全为零的情况 
		for (int i = 0; i < n; i++)
		{
			cin >> A[i];
			if (A[i] < 0)
			{
				flag++;
			}
		}
		DP[0].data = A[0];
		DP[0].star = 0;
		DP[0].end = 0;
		if (flag == n)       //如果数组全为零 
		{
			cout << "0" << " " << A[0] << " " << A[n - 1] << endl;
		}
		else              //数组不是全为零 
		{
			for (int i = 1; i < n; i++)
			{
				if (A[i] > (DP[i - 1].data + A[i]))
				{
					DP[i].data = A[i];
					DP[i].star = i;     //设置新的起始下标 
					DP[i].end = i;      //设置新的结束下标 
				}
				else
				{
					DP[i].data = DP[i - 1].data + A[i];
					DP[i].star = DP[i - 1].star;
					DP[i].end = i;
				}
			}
			for (int i = 0; i < n - 1; i++)    //选择排序 
			{
				int k = i;
				for (int j = i + 1; j < n; j++)
				{
					if (DP[j].data > DP[k].data)
					{
						k = j;
					}
				}
				if (i != k)
				{
					dp temp = DP[i];
					DP[i] = DP[k];
					DP[k] = temp;
				}
			}
			//输出 
			cout << DP[0].data << " " << A[DP[0].star] << " " << A[DP[0].end] << endl;
		}

	}
}

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值