最大连续子序列求和问题如下:
给定一个序列:A1,A2,A3......An,求i,j(1<=i<=j<=n),使得Ai+.....+Aj最大,输出这个最大值的和。
例:
输入 -2 11 -4 13 -5 -2
显而易见11+(-4)+13=20为最大值,因此此时的最大值为20。
采用暴力法复杂度为O(),对于较大的序列来说,显然是无法承受的。
采用动态规划的方法进行编写代码,复杂度会降低到O(),下面介绍一下具体的方法和代码。
步骤1:令状态dp[i]表示以A[i]作为末尾的连续序列的最大值,同样以序列 -2 11 -4 13 -5 -2 为例,那么:
dp[0]=-2
dp[1]=11
dp[2]=11+(-4)=7
dp[3]=(7+13)=20
dp[4]=20+(-5)=15
dp[5]=15+(-2)=13
所以,只需要求解dp数组的最大值即可。
步骤2:
分析:因为dp[i]是以A[i]为末尾的连续序列,那么有且只有两种情况:
- 这个最大连续序列只有A[i],即A[i]以前的序列和小于0;
- 这个最大连续序列包括A[i];
于是可以得到状态转移方程:
因此很容易写出代码如下:
#include<cstdio>
#include<algorithm>
#include<iostream>
using namespace std;
const int maxn = 100;
int main()
{
int A[maxn], dp[maxn]; //定义序列A[i]和状态数组dp
int n;
cin >> n;
for (int i = 0; i < n; i++) //输入数组
{
cin >> A[i];
}
dp[0] = A[0]; //初始状态
for (int i = 1; i < n; i++)
{
dp[i] = max(A[i], dp[i - 1] + A[i]); //状态转移方程
}
sort(dp, dp + n);
cout << dp[n - 1]; //输出最大值
}
以上面例子为基础,进行简单的修改:
题目描述
给定K个整数的序列{ N1, N2, ..., NK },其任意连续子序列可表示为{ Ni, Ni+1, ..., Nj },其中 1 <= i <= j <= K。最大连续子序列是所有连续子序列中元素和最大的一个,例如给定序列{ -2, 11, -4, 13, -5, -2 },其最大连续子序列为{ 11, -4, 13 },最大和为20。现在增加一个要求,即还需要输出该子序列的第一个和最后一个元素。
输入
测试输入包含若干测试用例,每个测试用例占2行,第1行给出正整数K( K<= 10000 ),第2行给出K个整数,中间用空格分隔,每个数的绝对值不超过100。当K为0时,输入结束,该用例不被处理。
输出
对每个测试用例,在1行里输出最大和、最大连续子序列的第一个和最后一个元素,中间用空格分隔。如果最大连续子序列不唯一,则输出序号i和j最小的那个(如输入样例的第2、3组)。若所有K个元素都是负数,则定义其最大和为0,输出整个序列的首尾元素。
样例输入
5
-3 9 -2 5 -4
3
-2 -3 -1
0
样例输出
12 9 5
0 -2 -1
代码如下:
#include<cstdio>
#include<algorithm>
#include<iostream>
using namespace std;
const int maxn = 1001;
struct dp
{
int data; //记录dp[i]的数值部分
int star; //记录起始下标
int end; //记录结束下标
}DP[maxn]; //定义结构体
int A[maxn];
// 初始化
void init()
{
for (int i = 0; i < maxn; i++)
{
DP[i].data = 0;
DP[i].star = 0;
DP[i].end = 0;
}
}
int main()
{
int n;
while (scanf("%d", &n) != 0)
{
init(); //初始化
int flag = 0; //记录录入的数组全为零的情况
for (int i = 0; i < n; i++)
{
cin >> A[i];
if (A[i] < 0)
{
flag++;
}
}
DP[0].data = A[0];
DP[0].star = 0;
DP[0].end = 0;
if (flag == n) //如果数组全为零
{
cout << "0" << " " << A[0] << " " << A[n - 1] << endl;
}
else //数组不是全为零
{
for (int i = 1; i < n; i++)
{
if (A[i] > (DP[i - 1].data + A[i]))
{
DP[i].data = A[i];
DP[i].star = i; //设置新的起始下标
DP[i].end = i; //设置新的结束下标
}
else
{
DP[i].data = DP[i - 1].data + A[i];
DP[i].star = DP[i - 1].star;
DP[i].end = i;
}
}
for (int i = 0; i < n - 1; i++) //选择排序
{
int k = i;
for (int j = i + 1; j < n; j++)
{
if (DP[j].data > DP[k].data)
{
k = j;
}
}
if (i != k)
{
dp temp = DP[i];
DP[i] = DP[k];
DP[k] = temp;
}
}
//输出
cout << DP[0].data << " " << A[DP[0].star] << " " << A[DP[0].end] << endl;
}
}
}