二叉树的重建

二叉树的遍历方法一共有四种,先序遍历,中序遍历,后序遍历,层序遍历,如果给出其中的两种遍历序列,能否构建出这颗二叉树?事实上,中序序列可以和先序遍历、后续遍历,层序遍历中的任意一种结合构建出这棵二叉树,但是这三种序列的搭配无法完成二叉树的构建。

给出先序遍历序列和中序遍历序列,如何构建二叉树?

假设先序遍历的序列为:

pre1、pre2、......、pren;

中序遍历的序列为:

in1,、in2、......、inn;

由先序序列的性质可以知道,pre1为根节点,由中序序列的性质可以知道,根节点将二叉树分为左子树和右子树,因此只要在中序序列中找某个节点ink,使得ink==pre1,就找到了根节点的位置。所以此时可以得到左子树的节点个数为k-1。

此时,中序序列的左子树区间为[1,k-1],先序序列的左子树区间为[2,k]。同理可以得出相应的右子树的区间,接着只需要进行递归即可构建出二叉树。核心代码代码如下:

node* creat(int preL, int preR, int inL, int inR) //定义先序遍历的左右区间和中序遍历的左右区间 
{
	if (preL > preR)                  //如果先序的左区间值大于右区间值 
	{
		return NULL;               //区间长度小于0,所以直接返回 
	}
	node* root = new node;           //新建一个节点,用来存放当前根节点 
	root->c = pre[preL];             //新节点的数据为根节点的值 
	int k;
	for (k = inL; k <= inR; k++)
	{
		if (in[k] == pre[preL])
		{
			break;                //寻找中序序列中跟节点的位置 
		}
	}
	int numleft = k - inL;
	//左子树的先序区间为[preL+1,preL+numleft]
	//左子树的中序区间为[inL,k-1] 
	root->lchild = creat(preL + 1, preL + numleft, inL, k - 1);
	//同理递归查找右子树的节点  
	root->rchild = creat(preL + numleft + 1, preR, k + 1, inR);
	return root;
}

以一道例题来说明:

问题 C: 二叉树遍历

题目描述

二叉树的前序、中序、后序遍历的定义:
前序遍历:对任一子树,先访问跟,然后遍历其左子树,最后遍历其右子树;
中序遍历:对任一子树,先遍历其左子树,然后访问根,最后遍历其右子树;
后序遍历:对任一子树,先遍历其左子树,然后遍历其右子树,最后访问根。
给定一棵二叉树的前序遍历和中序遍历,求其后序遍历(提示:给定前序遍历与中序遍历能够唯一确定后序遍历)。

输入

两个字符串,其长度n均小于等于26。
第一行为前序遍历,第二行为中序遍历。
二叉树中的结点名称以大写字母表示:A,B,C....最多26个结点。

输出

输入样例可能有多组,对于每组测试样例,
输出一行,为后序遍历的字符串。

样例输入

ABC
CBA
ABCDEFG
DCBAEFG

样例输出

CBA
DCBGFEA

代码如下:

#include<cstdio>
#include<iostream>
#include<string>
using namespace std;
struct node                 //定义二叉树结构体 
{
	char c;
	node* lchild;
	node* rchild;
};
string pre;
string in;
node* creat(int preL, int preR, int inL, int inR) //定义先序遍历的左右区间和中序遍历的左右区间 
{
	if (preL > preR)                  //如果先序的左区间值大于右区间值 
	{
		return NULL;               //区间长度小于0,所以直接返回 
	}
	node* root = new node;           //新建一个节点,用来存放当前根节点 
	root->c = pre[preL];             //新节点的数据为根节点的值 
	int k;
	for (k = inL; k <= inR; k++)
	{
		if (in[k] == pre[preL])
		{
			break;                //寻找中序序列中跟节点的位置 
		}
	}
	int numleft = k - inL;
	//左子树的先序区间为[preL+1,preL+numleft]
	//左子树的中序区间为[inL,k-1] 
	root->lchild = creat(preL + 1, preL + numleft, inL, k - 1);
	//同理递归查找右子树的节点  
	root->rchild = creat(preL + numleft + 1, preR, k + 1, inR);
	return root;
}
void posorder(node* root)
{
	if (root == NULL)
	{
		return;
	}
	posorder(root->lchild);
	posorder(root->rchild);
	printf("%c", root->c);
}
int main()
{
	while (cin >> pre >> in)                   //输入字符串 
	{
		int n = pre.length();
		node* root = creat(0, n - 1, 0, n - 1);    //调用函数 
		posorder(root);
		cout << endl;
	}
}

 

在探索智慧旅游的新纪元中,一个集科技、创新与服务于一体的整体解决方案正悄然改变着我们的旅行方式。智慧旅游,作为智慧城市的重要分支,旨在通过新一代信息技术,如云计算、大数据、物联网等,为游客、旅游企业及政府部门提供无缝对接、高效互动的旅游体验与管理模式。这一方案不仅重新定义了旅游行业的服务标准,更开启了旅游业数字化转型的新篇章。 智慧旅游的核心在于“以人为本”,它不仅仅关注技术的革新,更注重游客体验的提升。从游前的行程规划、信息查询,到游中的智能导航、个性化导览,再到游后的心情分享、服务评价,智慧旅游通过构建“一云多屏”的服务平台,让游客在旅游的全过程中都能享受到便捷、个性化的服务。例如,游客可以通过手机APP轻松定制专属行程,利用智能语音导览深入了解景点背后的故事,甚至通过三维GIS地图实现虚拟漫游,提前感受目的地的魅力。这些创新服务不仅增强了游客的参与感和满意度,也让旅游变得更加智能化、趣味化。 此外,智慧旅游还为旅游企业和政府部门带来了前所未有的管理变革。通过大数据分析,旅游企业能够精准把握市场动态,实现旅游产品的精准营销和个性化推荐,从而提升市场竞争力。而政府部门则能利用智慧旅游平台实现对旅游资源的科学规划和精细管理,提高监管效率和质量。例如,通过实时监控和数据分析,政府可以迅速应对旅游高峰期的客流压力,有效预防景区超载,保障游客安全。同时,智慧旅游还促进了跨行业、跨部门的数据共享与协同合作,为旅游业的可持续发展奠定了坚实基础。总之,智慧旅游以其独特的魅力和无限潜力,正引领着旅游业迈向一个更加智慧、便捷、高效的新时代。
内容概要:本文详细介绍了大模型的发展现状与未来趋势,尤其聚焦于DeepSeek这一创新应用。文章首先回顾了人工智能的定义、分类及其发展历程,指出从摩尔定律到知识密度提升的转变,强调了大模型知识密度的重要性。随后,文章深入探讨了DeepSeek的发展路径及其核心价值,包括其推理模型、思维链技术的应用及局限性。此外,文章展示了DeepSeek在多个行业的应用场景,如智能客服、医疗、金融等,并分析了DeepSeek如何赋能个人发展,具体体现在公文写作、文档处理、知识搜索、论文写作等方面。最后,文章展望了大模型的发展趋势,如通用大模型与垂域大模型的协同发展,以及本地部署小模型成为主流应用渠道的趋势。 适合人群:对人工智能和大模型技术感兴趣的从业者、研究人员及希望利用DeepSeek提升工作效率的个人用户。 使用场景及目标:①了解大模型技术的最新进展和发展趋势;②掌握DeepSeek在不同领域的具体应用场景和操作方法;③学习如何通过DeepSeek提升个人在公文写作、文档处理、知识搜索、论文写作等方面的工作效率;④探索大模型在特定行业的应用潜力,如医疗、金融等领域。 其他说明:本文不仅提供了理论知识,还结合实际案例,详细介绍了DeepSeek在各个场景下的应用方式,帮助读者更好地理解和应用大模型技术。同时,文章也指出了当前大模型技术面临的挑战,如模型的局限性和数据安全问题,鼓励读者关注技术的持续改进和发展。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值