二叉树的重建

二叉树的遍历方法一共有四种,先序遍历,中序遍历,后序遍历,层序遍历,如果给出其中的两种遍历序列,能否构建出这颗二叉树?事实上,中序序列可以和先序遍历、后续遍历,层序遍历中的任意一种结合构建出这棵二叉树,但是这三种序列的搭配无法完成二叉树的构建。

给出先序遍历序列和中序遍历序列,如何构建二叉树?

假设先序遍历的序列为:

pre1、pre2、......、pren;

中序遍历的序列为:

in1,、in2、......、inn;

由先序序列的性质可以知道,pre1为根节点,由中序序列的性质可以知道,根节点将二叉树分为左子树和右子树,因此只要在中序序列中找某个节点ink,使得ink==pre1,就找到了根节点的位置。所以此时可以得到左子树的节点个数为k-1。

此时,中序序列的左子树区间为[1,k-1],先序序列的左子树区间为[2,k]。同理可以得出相应的右子树的区间,接着只需要进行递归即可构建出二叉树。核心代码代码如下:

node* creat(int preL, int preR, int inL, int inR) //定义先序遍历的左右区间和中序遍历的左右区间 
{
	if (preL > preR)                  //如果先序的左区间值大于右区间值 
	{
		return NULL;               //区间长度小于0,所以直接返回 
	}
	node* root = new node;           //新建一个节点,用来存放当前根节点 
	root->c = pre[preL];             //新节点的数据为根节点的值 
	int k;
	for (k = inL; k <= inR; k++)
	{
		if (in[k] == pre[preL])
		{
			break;                //寻找中序序列中跟节点的位置 
		}
	}
	int numleft = k - inL;
	//左子树的先序区间为[preL+1,preL+numleft]
	//左子树的中序区间为[inL,k-1] 
	root->lchild = creat(preL + 1, preL + numleft, inL, k - 1);
	//同理递归查找右子树的节点  
	root->rchild = creat(preL + numleft + 1, preR, k + 1, inR);
	return root;
}

以一道例题来说明:

问题 C: 二叉树遍历

题目描述

二叉树的前序、中序、后序遍历的定义:
前序遍历:对任一子树,先访问跟,然后遍历其左子树,最后遍历其右子树;
中序遍历:对任一子树,先遍历其左子树,然后访问根,最后遍历其右子树;
后序遍历:对任一子树,先遍历其左子树,然后遍历其右子树,最后访问根。
给定一棵二叉树的前序遍历和中序遍历,求其后序遍历(提示:给定前序遍历与中序遍历能够唯一确定后序遍历)。

输入

两个字符串,其长度n均小于等于26。
第一行为前序遍历,第二行为中序遍历。
二叉树中的结点名称以大写字母表示:A,B,C....最多26个结点。

输出

输入样例可能有多组,对于每组测试样例,
输出一行,为后序遍历的字符串。

样例输入

ABC
CBA
ABCDEFG
DCBAEFG

样例输出

CBA
DCBGFEA

代码如下:

#include<cstdio>
#include<iostream>
#include<string>
using namespace std;
struct node                 //定义二叉树结构体 
{
	char c;
	node* lchild;
	node* rchild;
};
string pre;
string in;
node* creat(int preL, int preR, int inL, int inR) //定义先序遍历的左右区间和中序遍历的左右区间 
{
	if (preL > preR)                  //如果先序的左区间值大于右区间值 
	{
		return NULL;               //区间长度小于0,所以直接返回 
	}
	node* root = new node;           //新建一个节点,用来存放当前根节点 
	root->c = pre[preL];             //新节点的数据为根节点的值 
	int k;
	for (k = inL; k <= inR; k++)
	{
		if (in[k] == pre[preL])
		{
			break;                //寻找中序序列中跟节点的位置 
		}
	}
	int numleft = k - inL;
	//左子树的先序区间为[preL+1,preL+numleft]
	//左子树的中序区间为[inL,k-1] 
	root->lchild = creat(preL + 1, preL + numleft, inL, k - 1);
	//同理递归查找右子树的节点  
	root->rchild = creat(preL + numleft + 1, preR, k + 1, inR);
	return root;
}
void posorder(node* root)
{
	if (root == NULL)
	{
		return;
	}
	posorder(root->lchild);
	posorder(root->rchild);
	printf("%c", root->c);
}
int main()
{
	while (cin >> pre >> in)                   //输入字符串 
	{
		int n = pre.length();
		node* root = creat(0, n - 1, 0, n - 1);    //调用函数 
		posorder(root);
		cout << endl;
	}
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值