【Grafana安装】在Linux Rocky8系统下安装

参考官方原文

https://grafana.com/grafana/download?pg=graf&plcmt=deploy-box-1

一、yum安装

yum install -y https://dl.grafana.com/enterprise/release/grafana-enterprise-11.1.0-1.x86_64.rpm

二、改为中文

sed -i 's/default_language.*$/default_language = zh-Hans/' /usr/share/grafana/conf/defaults.ini

三、设置开机启动

systemctl restart grafana-server && systemctl enable grafana-server

四、防火墙限制打开

systemctl stop firewalld && systemctl disable firewalld

或者添加端口例外也行

firewall-cmd --add-port=3000/tcp --permanent

五、登录

http://IP:3000/login
admin/admin

六、配置Zabbix

1、添加zabbix插件

【管理】-【插件和数据】-【插件】
搜索zabbix,install,enable

2、配置zabbix接口

【连接】-【数据源】

(1) 连接URL配置

http://localhost:8080/api_jsonrpc.php

(2) zabbix账号配置

Admin/zabbix

<think>好的,用户的问题是关于作为企业信息技术主管,如何在配备两张A4000显卡的工作站上本地部署DeepSeek,并搭建本地知识库,同时创建API供局域网使用。用户需要推荐操作系统和详细的部署步骤。我需要先理清楚各个部分的需求和可能的解决方案。 首先,操作系统方面。用户是企业环境,稳定性和支持性很重要。常见的选择有Ubuntu Server和CentOS,但CentOS已经转向Stream,可能稳定性不如以前。Ubuntu LTS版本(比如22.04)有长期支持,社区支持好,驱动和软件兼容性也不错,特别是对NVIDIA显卡的支持较好,所以可能推荐Ubuntu。不过用户可能需要图形界面吗?工作站如果是用于深度学习,可能更倾向于命令行,但如果有需要的话,可以安装桌面环境,但服务器版通常更轻量。所以这里可能需要确认是否需要桌面,但用户可能更倾向于服务器系统,所以推荐Ubuntu Server 22.04 LTS。 接下来是硬件部分,两张A4000显卡。需要确保系统正确识别显卡,安装合适的驱动。NVIDIA的驱动安装步骤需要详细说明,包括添加PPA、安装驱动、验证驱动和CUDA。可能还需要安装cuDNN等库,但具体要看DeepSeek的依赖情况。此外,双显卡的配置是否需要特别处理,比如NVLINK?不过A4000是否支持?A4000是Ampere架构,支持PCIe 4.0,但可能不需要特别配置,系统会自动识别,但需要确保驱动正确安装,并且深度学习框架能识别到多卡。可能需要安装NVIDIA的驱动和CUDA工具包,同时配置多卡环境。 然后是部署DeepSeek。这里可能需要明确DeepSeek的具体版本或项目,因为DeepSeek可能指不同的模型或应用。假设是类似DeepSeek-R1之类的模型,或者是需要从源码或预训练模型部署。可能需要使用Hugging Face的Transformers库,或者使用其他框架如PyTorch或TensorFlow。需要安装Python环境,虚拟环境管理(如conda或venv),下载模型权重,配置推理代码。此外,可能需要使用加速库如DeepSpeed或优化推理的库,如vLLM,来充分利用多GPU。 本地知识库的构建可能需要一个向量数据库,比如Milvus、FAISS、Chroma等。需要安装数据库,将文档数据进行处理(分词、向量化),存储到数据库中,然后与DeepSeek模型结合,实现检索增强生成(RAG)。这部分需要详细步骤,包括数据处理、向量化模型的选用(如sentence-transformers),以及如何将查询传递给模型并检索相关知识。 创建API的话,常用的框架有FastAPI或Flask。需要编写API接口,处理请求,调用模型和知识库,返回结果。同时需要考虑并发处理、GPU资源管理,可能需要使用异步框架或者多线程/进程。另外,API需要部署在局域网内,可能需要配置网络,比如使用uvicorn或gunicorn作为服务器,绑定到0.0.0.0,设置防火墙规则允许局域网访问,以及可能的身份验证机制。 安全方面,作为企业环境,需要考虑API的访问控制,比如API密钥验证,HTTPS加密(虽然局域网内可能不需要,但如果有敏感数据的话可能需要自签名证书),以及监控和日志记录。 步骤的大致流程可能是: 1. 安装操作系统(Ubuntu Server 22.04) 2. 安装NVIDIA驱动和CUDA 3. 配置Python环境,安装依赖 4. 部署DeepSeek模型 5. 搭建本地知识库(向量数据库) 6. 开发API服务 7. 配置网络和安全性 8. 测试和优化 需要详细每个步骤的具体命令和注意事项,比如驱动版本的选择,CUDA与PyTorch版本的兼容性,模型下载的权限问题,向量数据库的安装方式,API的部署方式等。可能还需要考虑Docker容器化部署,但用户可能希望直接在宿主机上部署,所以暂时不涉及容器化。 另外,可能遇到的一些问题:驱动安装失败,CUDA版本不兼容,多GPU的显存分配,模型并行或数据并行的配置,API的并发性能,知识库的更新和维护等。需要提醒用户注意这些点,并提供相应的解决建议或参考资料。 总结来说,需要结构化的步骤,每个步骤包含具体的命令和解释,确保用户能够按部就班地进行操作,并在关键环节给出提示或验证方法,比如验证驱动安装成功,验证GPU是否被识别,测试模型推理是否正常等。</think>以下是为企业环境部署DeepSeek本地知识库及API的详细方案,分操作系统选择、部署步骤、注意事项三部分说明: --- ### **一、操作系统推荐** **Ubuntu Server 22.04 LTS** - **优势**:长期支持、NVIDIA驱动兼容性好、社区资源丰富、轻量化适合服务器环境。 - **备选方案**:Rocky Linux 9(若企业偏好RHEL系) --- ### **二、详细部署步骤** #### **1. 系统初始化** ```bash # 更新系统 sudo apt update && sudo apt upgrade -y # 安装基础工具 sudo apt install -y build-essential git curl wget python3-pip ``` #### **2. NVIDIA驱动与CUDA安装** ```bash # 添加GPU驱动PPA sudo add-apt-repository ppa:graphics-drivers/ppa -y sudo apt update # 自动安装推荐驱动(通常为最新版) sudo ubuntu-drivers autoinstall # 安装CUDA Toolkit 12.1(适配A4000) wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/cuda-ubuntu2204.pin sudo mv cuda-ubuntu2204.pin /etc/apt/preferences.d/cuda-repository-pin-600 sudo apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/3bf863cc.pub sudo add-apt-repository "deb https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/ /" sudo apt install -y cuda-12-1 # 验证安装 nvidia-smi # 应显示两张A4000 nvcc --version # 检查CUDA版本 ``` #### **3. Python环境配置** ```bash # 安装Miniconda wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh bash Miniconda3-latest-Linux-x86_64.sh -b -p $HOME/miniconda source ~/miniconda/bin/activate # 创建虚拟环境 conda create -n deepseek python=3.10 -y conda activate deepseek # 安装PyTorch(适配CUDA 12.1) pip install torch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 --index-url https://download.pytorch.org/whl/cu121 ``` #### **4. DeepSeek模型部署** ```bash # 下载模型(需申请官方权限) git clone https://github.com/deepseek-ai/DeepSeek-LLM.git cd DeepSeek-LLM && pip install -r requirements.txt # 多GPU配置(修改推理脚本) import torch model = AutoModelForCausalLM.from_pretrained( "deepseek-ai/deepseek-llm-7b-base", device_map='auto', # 自动分配双卡 torch_dtype=torch.bfloat16 ) ``` #### **5. 本地知识库搭建(以Chroma为例)** ```bash # 安装向量数据库 pip install chromadb sentence-transformers # 文档处理脚本示例 from chromadb import Documents, EmbeddingFunction emb_fn = SentenceTransformerEmbeddings(model_name="BAAI/bge-base-zh") client.create_collection(name="docs", embedding_function=emb_fn) client.add(documents=["文档内容1", "文档内容2"], metadatas=[...]) ``` #### **6. API服务开发(FastAPI示例)** ```python # api.py from fastapi import FastAPI app = FastAPI() @app.post("/query") async def query(prompt: str): knowledge = chroma_query(prompt) # 检索知识库 response = model.generate(f"基于以下知识:{knowledge},回答:{prompt}") return {"response": response} # 启动服务(局域网访问) uvicorn api:app --host 0.0.0.0 --port 8000 --workers 2 ``` #### **7. 网络与安全配置** ```bash # 开放防火墙 sudo ufw allow 8000/tcp # API密钥验证(中间件示例) from fastapi.security import APIKeyHeader api_key_header = APIKeyHeader(name="X-API-Key") async def validate_key(key: str = Depends(api_key_header)): if key != "YOUR_SECRET_KEY": raise HTTPException(status_code=403) ``` --- ### **三、关键注意事项** 1. **多GPU优化** - 使用`accelerate`库配置多卡并行: ```bash accelerate config # 交互式选择多GPU选项 ``` - 启用Flash Attention提升推理速度: ```python model = AutoModel.from_pretrained(..., use_flash_attention_2=True) ``` 2. **企业级监控** - 使用Prometheus+Grafana监控GPU利用率/显存状态 - 日志集中化管理(ELK Stack) 3. **灾备方案** - 定期备份`/opt/deepseek-models`目录 - 使用Ansible编写自动化部署脚本 --- ### **验证流程** 1. `curl -X POST http://IP:8000/query -H "X-API-Key: YOUR_KEY" -d '{"prompt":"公司年假政策是什么?"}'` 2. 使用`nvtop`监控双卡负载 3. 压力测试:`locust --headless -u 100 -r 10` 如需更具体的模型部署细节或企业级高可用方案,建议联系DeepSeek官方获取企业支持包。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值