
SBDD
文章平均质量分 64
Pengsen Ma
这个作者很懒,什么都没留下…
展开
-
“bound drug/molecule”or “unbound drug/molecule”、molecule shape、sketching是什么?
意思就是这个是不是与蛋白质有对接效果的分子,unbound就是没有任何对接的分子,例如zinc数据集啥的。原创 2024-02-08 10:37:27 · 364 阅读 · 0 评论 -
Pocket2Mol + Generation of Atom Positions生成原子位置的方法有什么?联合概率是什么?
联合概率:联合概率:联合概率是统计学中的一个概念,用于描述。当我们谈论多个变量的联合概率时,我们是在探讨这些变量同时取特定值的概率。方法一:预测新的原子与以往原子的分布距离,然后从联合概率中采样然而,长距离很难预测,这在原子生成中引入了额外的误差。原创 2024-02-07 09:04:48 · 744 阅读 · 0 评论 -
等变和不变 、向量神经元(vector neurons)是什么?
等变:如果输入是一个旋转后的椅子,那么输出也应该是一个旋转后的椅子不变:如果输入是一个旋转后的椅子,那么输出应该是一个椅子,而不是一只狗。原创 2024-02-04 21:48:04 · 640 阅读 · 1 评论 -
Equivariant GNN Networks(等变图神经网络)
旋转不等变、很难扩展到大的蛋白质口袋。原创 2024-02-04 20:31:40 · 533 阅读 · 0 评论 -
3DSBDD训练过程
对于每一个实际上没有原子存在的位置(负样本位置 r),模型预测该位置没有原子存在的概率 p(Nothing∣r,C)应该是高的,因为实际上这些位置是空的。损失函数的总体目标是鼓励模型正确预测实际有原子的位置(减小对这些位置预测为'空'的概率),同时也正确预测实际没有原子的位置(增加对这些位置预测为'空'的概率)。对于每个正样本分布p+ 的样本位置 r,模型会输出一个概率分布 p(e∣r,C),表示在给定的化学环境 C 条件下,位置 r 被每种化学元素 e 占据的概率。原创 2024-01-30 09:52:05 · 438 阅读 · 0 评论 -
3DSBDD的sampling过程是怎么实现的?
First, we haveto define the joint distribution of e and r, i.e. p(e, r|C), from which we can jointly sample an atom’s chemical element and its position. Second, notice that simply drawing i.i.d. samples from p(e, r|C)doesn’t make sense because atoms are原创 2024-01-30 08:44:55 · 102 阅读 · 0 评论 -
3DSBDD中的Context Encoder、Spatial Classifier是怎么实现的?
即通过学习边的权重(这里是通过 w(dij) 函数体现的)和聚合邻居节点的信息来更新每个节点的嵌入。这个过程反复迭代,从而在每个节点的嵌入中编码其在图中的结构位置和邻域的信息。这是MPNN中每个原子怎么得到context信息的过程,它和GCN的计算基本一致:将。自己的信息 + 周围节点的信息(边的信息d_ij+节点的信息h_j)*权重w。原创 2024-01-29 16:55:07 · 365 阅读 · 0 评论 -
MPNN、GCN、DenseNet blocks之间的关系,GNN中“层”是什么意思?
GNN中的层的意思是每次消息传递一次就叫一个层,在图神经网络(GNN)中,。在每个层中,每个节点都会与它的直接邻居进行交互,通过这种方式,节点的信息可以传递到其相邻的节点。随着网络深度的增加,通过多个这样的层,节点可以间接接收更远邻居的信息。因此,。例如,在第一层,一个节点的新特征表示将只包括它自己的特征和它的直接邻居的特征。到了第二层,每个节点的表示将进一步整合其邻居的邻居的特征,从而能够捕获到更广泛的图结构信息。这样层层叠加,每个层都在原有的基础上进一步扩大了信息的传递范围。原创 2024-01-28 21:10:30 · 826 阅读 · 0 评论 -
SBDD的节点选择(Node selection)和树的扩展(Tree expansion)的操作是怎么进行的?
【CS 2021】 DeepLigBuilder + Structure-based de novo drug design using 3D deep generative models-SI原创 2024-01-28 20:18:13 · 222 阅读 · 0 评论 -
节点的度(Degree of a node)、“入度”(In-degree)、“出度”(Out-degree)
在一个无向图中,每条边连接两个节点,对于每个节点来说,它的度就是与它相连的边的总数。在某些网络中,如互联网或食物网,节点的度分布可以揭示网络的结构特性,如存在小数量的高度节点和大量低度节点的情况,这种分布通常称为幂律分布或无标度网络。节点的度是一个重要的度量指标,因为它可以帮助理解节点在图中的重要性。通常,度数较高的节点被认为在网络中更为重要或中心,例如在社交网络分析中,在图论和网络分析中,“节点的度”(Degree of a node)是指与。原创 2024-01-28 16:56:51 · 12272 阅读 · 0 评论 -
邻接矩阵、关联矩阵
邻接矩阵是一种用来表示图中。在邻接矩阵中,顶点。对于无权图,如果顶点 i 和顶点 j 之间有一条边,则矩阵中的元素 Aij(位于第 i 行和第 j 列)将会是1;如果没有边,那么 Aij 将会是0。对于有权图,Aij 将会是相应边的权重值。对于无向图,邻接矩阵是对称的,因为边是双向的;对于有向图,邻接矩阵则不一定是对称的。原创 2024-01-28 16:53:28 · 4946 阅读 · 0 评论 -
MPNN(Message Passing Neural Network)、graph pooling 、unpooling
The state encoder is mainly composed of MPNN layers organized into DenseNet blocks, which use graph pooling and unpooling layers (see Section S1.5†) to reduce the memory cost during training.原创 2024-01-28 16:42:03 · 295 阅读 · 0 评论 -
SBDD Protein and Ligand Representation(SBDD蛋白质和配体的表示)
【Arxiv 2023】综述 + A Systematic Survey in Geometric Deep Learning for Structure-based Drug Design。原创 2024-01-27 21:21:32 · 284 阅读 · 0 评论 -
【文献阅读】Pocket2Mol : 基于3D蛋白质口袋的高效分子采样 + CrossDocked数据集说明
深度学习在药物设计方面取得了巨大成功。生成模型主要思想是在紧凑的低维空间中高效地表示所有收集的化学结构,并通过扰乱隐藏值来采样新的候选药物。这些模型的输出可以是一维化学描述符、二维图(graph)和3D结构。然而,在分子水平上,小分子仅通过与特定的蛋白质口袋结合来抑制或激活特定的生物学功能。因此,基于口袋的药物设计受到越来越多的关注。更具体地说,给定目标蛋白的 3D 结合口袋,这些模型知道 3D 口袋的几何信息,并相应地生成与口袋结合的分子。原创 2023-09-27 10:46:32 · 1587 阅读 · 0 评论