成成你好呀笔记整理(知识点合集五)

第五十四讲 图的定义与术语 |【万’恶’图为首】

1.图

在前边讲解的线性表中,每个元素之间只有一个直接前驱和一个直接后继。

在树形结构中,数据元素之间是层次关系。

并且每一层上的数据元素可能和下一层中多个元素相关,但只能和上一层中一个元素相关。

但这仅仅都只是一对一,一对多的简单模型。

如果要研究如人与人之间关系就非常复杂了。

万恶图为首,前边可能有些童鞋会感觉树的术语好多。

可来到了图这章节,你才知道什么叫做真正的术语多!

2.图的定义

图(Graph)是由顶点的有穷非空集合和顶点之间边的集合组成。
在这里插入图片描述

通常表示为:

G(V,E)

G表示一个图,V是图G中顶点的集合,E是图G中边的集合。

对于图的定义,我们需要明确几个注意的地方:

        线性表中我们把数据元素叫元素,树中叫结点,在图中数据元素我们则称之为顶点(Vertex)。

        线性表可以没有数据元素,称为空表,树中可以没有结点,叫做空树,而图结构在咱国内大部分的教材中强调顶点集合V要有穷非空。

        线性表中,相邻的数据元素之间具有线性关系,树结构中,相邻两层的结点具有层次关系,而图结构中,任意两个顶点之间都可能有关系,顶点之间的逻辑关系用边来表示,边集可以是空的。

3.图的各种奇葩定义

无向边:

        若顶点Vi到Vj之间的边没有方向,则称这条边为无向边(Edge),用无序偶(Vi,Vj)来表示

在这里插入图片描述

上图G1是一个无向图,G1={V1,E1},其中:

V1={A,B,C,D},
E1={(A,B),(B,C),(C,D),(D,A),(A,C)}

有向边:

        若从顶点Vi到Vj的边有方向,则称这条边为有向边,也成为弧(Arc),用有序偶<Vi,Vj>来表示,Vi称为弧尾,Vj称为弧头。

在这里插入图片描述
上图G2是一个无向图,G2={V2,E2},其中

V2={A,B,C,D},
E2={<B,A>,<B,C>,<C,A>,<A,D>}

简单图:

        在图结构中,若不存在顶点到其自身的边,且同一条边不重复出现,则称这样的图为简单图。

以下两个则不属于简单图:
在这里插入图片描述

无向完全图:

        在无向图中,如果任意两个顶点之间都存在边,则称该图为无向完全图。含有n个顶点的无向完全图有n*(n-1)/2条边。

在这里插入图片描述
有向完全图:

        在有向图中,如果任意两个顶点之间都存在方向互为相反的两条弧,则称该图为有向完全图。含有n个顶点的有向完全图有n*(n-1)条边。

在这里插入图片描述
稀疏图和稠密图:

这里的稀疏和稠密是模糊的概念,都是相对而言的,通常认为边或弧数小于n*logn(n是顶点的个数)的图称为稀疏图,反之称为稠密图。

有些图的边或弧带有与它相关的数字。

这种与图的边或弧相关的数叫做权(Weight),带权的图通常称为网(Network)。
在这里插入图片描述
假设有两个图G1=(V1,E1)和G2=(V2,E2)。

如果V2⊆V1,E2⊆E1,则称G2为G1的子图(Subgraph)

在这里插入图片描述

第五十五讲 图的定义与术语2 |【顶点&边】

1.图的顶点与边之间的关系

对于无向图G=(V,E),如果边(V1,V2)∈E,则称顶点V1和V2互为邻接点(Adjacent),即V1和V2相邻接。

边(V1,V2)依附(incident)于顶点V1和V2,或者说边(V1,V2)与顶点V1和V2相关联。

顶点V的度(Degree)是和V相关联的边的数目,记为TD(V)。

如下图,顶点A与B互为邻接点,边(A,B)依附于顶点A与B上,顶点A的度为3。

在这里插入图片描述
对于有向图G=(V,E),如果有<V1,V2>∈E,则称顶点V1邻接到顶点V2,顶点V2邻接自顶点V1。

以顶点V为头的弧的数目称为V的入度(InDegree),记为ID(V)。

以V为尾的弧的数目称为V的出度(OutDegree),记为OD(V),因此顶点V的度为TD(V)=ID(V)+OD(V)。

下图顶点A的入度是2,出度是1,所以顶点A的度是3。

在这里插入图片描述
无向图G=(V,E)中从顶点V1到顶点V2的路径(Path)。

下图用红线列举了从顶点B到顶点D的四种不同路径
在这里插入图片描述
如果G是有向图,则路径也是有向的。

下图用红线列举顶点B到顶点D的两种路径,而顶点A到顶点B就不存在路径啦
在这里插入图片描述
路径的长度是路径上的边或弧的数目。

第一个顶点到最后一个顶点相同的路径称为回路或环(Cycle)。

简单环:(简单回路)

        序列中顶点不重复出现的路径称为简单路径,除了第一个顶点和最后一个顶点之外,其余顶点不重复出现的回路。

下图左侧是简单环,右侧不是简单环:
在这里插入图片描述
连通图

在无向图G中,如果从顶点V1到顶点V2有路径,则称V1和V2是连通的。

如果对于图中任意两个顶点Vi和Vj都是连通的,则称G是连通图(ConnectedGraph)

下图左侧不是连通图,右侧是连通图:
在这里插入图片描述
无向图中的极大连通子图称为连通分量。

注意以下概念:

        首先要是子图,并且子图是要连通的;

        连通子图含有极大顶点数;

        具有极大顶点数的连通子图包含依附于这些顶点的所有边。

在这里插入图片描述
有向图G中,如果对于每一对Vi到Vj都存在路径,则称G是强连通图。

有向图中的极大强连通子图称为有向图的强连通分量。

下图左侧并不是强连通图,右侧是。

并且右侧是左侧的极大强连通子图,也是左侧的强连通分量。
在这里插入图片描述
最后我们再来看连通图的生成树定义。

所谓的一个连通图的生成树是一个极小的连通子图,它含有图中全部的n个顶点,但只有足以构成一棵树的n-1条边。
在这里插入图片描述
如果一个有向图恰有一个顶点入度为0,其余顶点的入度均为1,则是一棵有向树。
在这里插入图片描述

第五十六讲 图的存储结构3 |【邻接矩阵】

1.图的存储结构

图的存储结构相比较线性表与树来说就复杂很多。

我们回顾下:

        对于线性表来说,是一对一的关系,所以用数组或者链表均可简单存放。

        树结构是一对多的关系,所以我们要将数组和链表的特性结合在一起才能更好的存放。

那么我们的图,是多对多的情况,另外图上的任何一个顶点都可以被看作是第一个顶点,任一顶点的邻接点之间也不存在次序关系。

我们仔细观察以下几张图,然后深刻领悟一下:
在这里插入图片描述你发现了吗:

它们其实都是一样的

因为任意两个顶点之间都可能存在联系。

因此无法以数据元素在内存中的物理位置来表示元素之间的关系。(内存物理位置是线性的,图的元素关系是平面的)

如果用多重链表来描述倒是可以做到,但在几节课前的树章节我们已经讨论过。

纯粹用多重链表导致的浪费是无法想像的。
(如果各个顶点的度数相差太大,就会造成巨大的浪费)

所幸,前辈们已经帮想好了出路,我们接下来会谈图的五种不同的存储结构,大家做好准备哦~

2.邻接矩阵(无向图)

考虑到图是由顶点和边或弧两部分组成,合在一起比较困难。

那就很自然地考虑到分为两个结构来分别存储。

顶点因为不区分大小、主次。

所以用一个一维数组来存储是狠不错的选择。

而边或弧由于是顶点与顶点之间的关系,一维数组肯定就搞不定了。

那我们不妨考虑用一个二维数组来存储。

于是我们的邻接矩阵方案就诞生了!

图的邻接矩阵(Adjacency Matrix)存储方式是用两个数组来表示图。

一个一维数组存储图中顶点信息,一个二维数组(称为邻接矩阵)存储图中的边或弧的信息。
在这里插入图片描述
我们可以设置两个数组,顶点数组为vertex[4]={V0,V1,V2,V3}。

边数组arc[4][4]为对称矩阵(0表示不存在顶点间的边,1表示顶点间存在边)。

对称矩阵:

        所谓对称矩阵就是n阶矩阵的元满足

        a[i][j]=a[j][i](0<=i,j<=n)

即从矩阵的左上角到右下角的主对角线为轴,右上角的元与左下角相对应的元全都是相等的。

有了这个二维数组组成的对称矩阵,我们就可以很容易地知道图中的信息:

        要判定任意两顶点是否有边无边就非常容易了;

        要知道某个顶点的度,其实就是这个顶点Vi在邻接矩阵中第i行(或第i列)的元素之和;

        求顶点Vi的所有邻接点就是将矩阵中第i行元素扫描一遍,arc[ i ][ j ]为1就是邻接点咯。

3.邻接矩阵(有向图)

无向图的边构成了一个对称矩阵,貌似浪费了一半的空间。

那如果是有向图来存放,会不会把资源都利用得很好呢?
在这里插入图片描述
可见顶点数组vertex[4]={V0,V1,V2,V3},弧数组arc[4][4]也是一个矩阵。

但因为是有向图,所以这个矩阵并不对称。

例如由V1到V0有弧,得到arc[1][0]=1,而V0到V1没有弧,因此arc[0][1]=0。

另外有向图是有讲究的,要考虑入度和出度,顶点V1的入度为1。

正好是第V1列的各数之和,顶点V1的出度为2,正好是第V1行的各数之和。

在图的术语中,我们提到了网这个概念,事实上也就是每条边上带有权的图就叫网。

在这里插入图片描述
这里“∞”表示一个计算机允许的、大于所有边上权值的值。

代码实现

仅供参考:

// 时间复杂度为O(n+n^2+e)

#define MAXVEX 100                        // 最大顶点数
#define INFINITY 65535                // 用65535来代表无穷大

typedef struct
{
        char vexs[MAXVEX];                                // 顶点表
        int arc[MAXVEX][MAXVEX];                // 邻接矩阵
        int numVertexes, numEdges;                // 图中当前的顶点数和边数
} MGraph;

// 建立无向网图的邻接矩阵
void CreateMGraph(MGraph *G)
{
        int i, j, k, w;
       
        printf("请输入顶点数和边数:\n");
        scanf("%d %d", &G->numVertexes, &G->numEdges);
       
        for( i=0; i < G->numVertexes; i++ )
        {
                scanf("%c", &G->vexs[i]);
        }
       
        for( i=0; i < G->numVertexes; i++ )
        {
                for( j=0; j < G->numVertexes; j++ )
                {
                        G->arc[i][j] = INFINITY;                        // 邻接矩阵初始化
                }
        }
       
        for( k=0; k < G->numEdges; k++ )
        {
                printf("请输入边(Vi,Vj)上的下标i,下标j和对应的权w:\n");                // 这只是例子,提高用户体验需要进行改善
                scanf("%d %d %d", &i, &j, &w);
                G->arc[i][j] = w;
                G->arc[j][i] = G->arc[i][j];                        // 是无向网图,对称矩阵
        }
}

第五十七讲 图的存储结构4 | 【邻接表】

1.邻接表(无向图)

邻接矩阵看上去是个不错的选择:

第一是容易理解;

第二是索引和编排都很舒服;

但是我们也发现,对于边数相对顶点较少的图,这种结构无疑是存在对存储空间的极大浪费。
在这里插入图片描述

因此我们可以考虑另外一种存储结构方式,例如把数组与链表结合一起来存储。

这种方式在图结构也适用,我们称为邻接表(AdjacencyList)。

邻接表的处理方法是这样:

        图中顶点用一个一维数组存储,当然,顶点也可以用单链表来存储,不过数组可以较容易地读取顶点信息,更加方便。

        图中每个顶点Vi的所有邻接点构成一个线性表,由于邻接点的个数不确定,所以我们选择用单链表来存储。

在这里插入图片描述
2.邻接表(有向图)

若是有向图,邻接表结构也是类似的。

我们先来看下把顶点当弧尾建立的邻接表,这样很容易就可以得到每个顶点的出度:
在这里插入图片描述
但也有时为了便于确定顶点的入度或以顶点为弧头的弧,我们可以建立一个有向图的逆邻接表:

在这里插入图片描述
此时我们很容易就可以算出某个顶点的入度或出度是多少。判断两顶点是否存在弧也很容易实现。

3.邻接表(网)

对于带权值的网图,可以在边表结点定义中再增加一个数据域来存储权值即可:
在这里插入图片描述
代码实现

#define MAXVEX 100

typedef struct EdgeNode                        // 边表结点
{
        int adjvex;                                        // 邻接点域,存储该顶点对应的下标
        int weight;                                        // 用于存储权值,对于非网图可以不需要
        struct EdgeNode *next;                // 链域,指向下一个邻接点
} EdgeNode;

typedef struct VertexNode                // 顶点表结点
{
        char data;                                        // 顶点域,存储顶点信息
        EdgeNode *firstEdge;                // 边表头指针
} VertexNode, AdjList[MAXVEX];

typedef struct
{
        AdjList adjList;
        int numVertexes, numEdges;        // 图中当前顶点数和边数
} GraphAdjList;

// 建立图的邻接表结构
void CreateALGraph(GraphAdjList *G)
{
        int i, j, k;
        EdgeNode *e;
       
        printf("请输入顶点数和边数:\n");
        scanf("%d %d", &G->numVertexes, &G->numEdges);
       
        // 读取顶点信息,建立顶点表
        for( i=0; i < G->numVertexes; i++ )
        {
                scanf("%c", &G->adjList[i].data);
                G->adjList[i].firstEdge = NULL;                // 初始化置为空表
        }
       
        for( k=0; k < G->numEdges; k++ )
        {
                printf("请输入边(Vi,Vj)上的顶点序号:\n");
                scanf("%d %d", &i, &j);
               
                e = (EdgeNode *)malloc(sizeof(EdgeNode));
                e->adjvex = j;                                                // 邻接序号为j
                e->next = G->adjList[i].firstEdge;
                G->adjList[i].firstEdge = e;
               
                e = (EdgeNode *)malloc(sizeof(EdgeNode));
                e->adjvex = i;                                                // 邻接序号为i
                e->next = G->adjList[j].firstEdge;
                G->adjList[j].firstEdge = e;
        }
}

第五十八讲 图的存储结构|【十字链表、邻接多重表、边集数组】

1.十字链表

邻接表固然优秀,但也有不足,例如对有向图的处理上,有时候需要再建立一个逆邻接表~

那我们思考了:

        有没有可能把邻接表和逆邻接表结合起来呢?

答案是肯定的,这就是我们现在要谈的十字链表(Orthogonal List)

为此我们重新定义顶点表结点结构:
在这里插入图片描述

接着重新定义边表结点结构:

在这里插入图片描述
在这里插入图片描述

十字链表的好处就是因为把邻接表和逆邻接表整合在了一起,这样既容易找到以Vi为尾的弧。

也容易找到以Vi为头的弧,因而容易求得顶点的出度和入度。

十字链表除了结构复杂一点外,其实创建图算法的时间复杂度是和邻接表相同的。

因此,在有向图的应用中,十字链表也是非常好的数据结构模型。

2.邻接多重表

讲了有向图的优化存储结构,对于无向图的邻接表,有没有问题呢?

如果我们在无向图的应用中,关注的重点是顶点的话,那么邻接表是不错的选择。

但如果我们更关注的是边的操作,比如对已经访问过的边做标记,或者删除某一条边等操作。

邻接表就显得不那么方便了。

到底有多烦?

用图片告诉你:

在这里插入图片描述
若要删除(V0,V2)这条边,就需要对邻接表结构中边表的两个结点进行删除操作。
在这里插入图片描述
因此,我们也仿照十字链表的方式,对边表结构进行改装,重新定义的边表结构如下:
在这里插入图片描述
其中iVex和jVex是与某条边依附的两个顶点在顶点表中的下标。

iLink指向依附顶点iVex的下一条边,jLink指向依附顶点jVex的下一条边。

也就是说:

在邻接多重表里边,边表存放的是一条边,而不是一个顶点。

在这里插入图片描述3.边集数组

边集数组是由两个一维数组构成,一个是存储顶点的信息,另一个是存储边的信息。

这个边数组每个数据元素由一条边的起点下标(begin)、终点下标(end)和权(weight)组成。
在这里插入图片描述

第五十九讲 图的遍历 | 【深度优先遍历】

1.图的遍历

树的遍历我们谈了四种方式,大家回忆一下。

树因为根结点只有一个,并且所有的结点都只有一个双亲,所以不是很难理解。

但是谈到图的遍历,那就复杂多了,因为:

        它的任一顶点都可以和其余的所有顶点相邻接,因此极有可能存在重复走过某个顶点或漏了某个顶点的遍历过程。

对于图的遍历,如果要避免以上情况,那就需要科学地设计遍历方案。

通常有两种遍历次序方案:

        它们是深度优先遍历和广度优先遍历。

2.深度优先遍历

深度优先遍历(DepthFirstSearch),也有称为深度优先搜索,简称为DFS。

它的具体思想类似于课程开头讲的找钥匙方案,无论从哪一间房间开始都可以。

将房间内的墙角、床头柜、床上、床下、衣柜、电视柜等挨个寻找,做到不放过任何一个死角。

当所有的抽屉、储藏柜中全部都找遍,接着再寻找下一个房间。

现在请大家一起来想办法走以下这个迷宫,要求
在这里插入图片描述
我们可以约定右手原则:

        在没有碰到重复顶点的情况下,分叉路口始终是向右手边走,每路过一个顶点就做一个记号。

在这里插入图片描述
最终形态:
在这里插入图片描述
迷宫走完了,所有的顶点也遍历过了,这就是深度优先遍历!

反应快的童鞋一定会感觉深度优先遍历其实就是一个递归的过程嘛~

如果再细心观察,你会发现整个遍历过程就像是一棵树的前序遍历!
在这里插入图片描述
邻接矩阵代码:

// 邻接矩阵的深度有限递归算法
// 邻接矩阵的创建代码见第五十六讲源代码部分
// 鱼C工作室(www.fishc.com)

#define TRUE 1
#define FALSE 0
#define MAX 256

typedef int Boolean;        // 这里我们定义Boolean为布尔类型,其值为TRUE或FALSE
Boolean visited[MAX];        // 访问标志的数组

void DFS(MGraph G, int i)
{
        int j;
       
        visited[j] = TRUE;                        // 访问过的顶点设置为TRUE
        printf("%c ", G.vexs[i]);        // 打印顶点
        for( j=0; j < G.numVertexes; j++ )
        {
                if( G.arc[i][j]==1 && !visited[j] )
                {
                        DFS(G, j);                        // 对为访问的邻接顶点递归调用
                }
        }
}

// 邻接矩阵的深度遍历操作
void DFSTraverse(MGraph G)
{
        int i;
       
        for( i=0; i < G.numVertexes; i++ )
        {
                visited[i] = FALSE;                // 初始化所有顶点状态都是未访问过状态
        }
       
        for( i=0; i < G.numVertexes; i++ )
        {
                if( !visited[i] )                // 若是连通图,只会执行一次
                {
                        DFS(G, i);
                }
        }
}

邻接表代码:

// 邻接表的深度有限递归算法
// 邻接表的创建代码见第五十七讲源代码部分
// 鱼C工作室(www.fishc.com)

#define TRUE 1
#define FALSE 0
#define MAX 256

typedef int Boolean;        // 这里我们定义Boolean为布尔类型,其值为TRUE或FALSE
Boolean visited[MAX];        // 访问标志的数组

void DFS(GraphAdjList GL, int i)
{
        EdgeNode *p;
       
        visited[i] = TRUE;
        printf("%c " GL->adjList[i].data);
        p = GL->adjList[i].firstEdge;
       
        while(p)
        {
                if( !visited[p->adjvex] )
                {
                        DFS(GL, p->adjvex);
                }
                p = p->next;
        }
}

// 邻接表的深度遍历操作
void DFSTraverse(GraphAdjList GL)
{
        int i;
       
        for( i=0; i < GL->numVertexes; i++ )
        {
                visited[i] = FALSE;                // 初始化所有顶点状态都是未访问过状态
        }
       
        for( i=0; i < GL->numVertexes; i++ )
        {
                if( !visited[i] )                // 若是连通图,只会执行一次
                {
                        DFS(GL, i);
                }
        }
}

第六十讲 马踏棋盘算法|【骑士周游问题】

1.马踏棋盘算法(骑士周游问题)

题目渊源:

        马踏棋盘问题(又称骑士周游或骑士漫游问题)是算法设计的经典问题之一。

题目要求:

        国际象棋的棋盘为8*8的方格棋盘,现将“马”放在任意指定的方格中,按照“马”走棋的规则将“马”进行移动。

        要求每个方格只能进入一次,最终使得“马”走遍棋盘64个方格。

编写代码,实现马踏棋盘的操作,要求用1~64来标注“马”移动的路径(看演示)。
在这里插入图片描述
马踏棋盘的一个解

对于在n*n的棋盘上,当n>=5且为偶数的时候,以任意点作点都有解。
在这里插入图片描述
一些相关的知识点

回溯法:

        之前我们谈过回溯法,还是那句话,指导思想很简单,就是一条路走到黑,碰壁了再回来一条路走到黑......一般和递归可以很好的搭配使用,还有深度优先搜索(DFS)。

哈密尔顿路径:

        图G中的哈密尔顿路径指的是经过图G中每个顶点,且只经过一次的一条轨迹。如果这条轨迹是一条闭合的路径(从起点出发不重复地遍历所有点后仍能回到起始点),那么这条路径称为哈密尔顿回路

代码实现:

#include <stdio.h>
#include <time.h>

#define X 8
#define Y 8

int chess[X][Y];

// 找到基于(x,y)位置的下一个可走的位置
int nextxy(int *x, int *y, int count)
{
        switch(count)
        {
                case 0:
                        if( *x+2<=X-1 && *y-1>=0 && chess[*x+2][*y-1]==0 )
                        {
                                *x = *x + 2;
                                *y = *y - 1;
                                return 1;
                        }
                        break;

                case 1:
                        if( *x+2<=X-1 && *y+1<=Y-1 && chess[*x+2][*y+1]==0 )
                        {
                                *x = *x + 2;
                                *y = *y + 1;
                                return 1;
                        }
                        break;

                case 2:
                        if( *x+1<=X-1 && *y-2>=0 && chess[*x+1][*y-2]==0 )
                        {
                                *x = *x + 1;
                                *y = *y - 2;
                                return 1;
                        }
                        break;

                case 3:
                        if( *x+1<=X-1 && *y+2<=Y-1 && chess[*x+1][*y+2]==0 )
                        {
                                *x = *x + 1;
                                *y = *y + 2;
                                return 1;
                        }
                        break;

                case 4:
                        if( *x-2>=0 && *y-1>=0 && chess[*x-2][*y-1]==0 )
                        {
                                *x = *x - 2;
                                *y = *y - 1;
                                return 1;
                        }
                        break;

                case 5:
                        if( *x-2>=0 && *y+1<=Y-1 && chess[*x-2][*y+1]==0 )
                        {
                                *x = *x - 2;
                                *y = *y + 1;
                                return 1;
                        }
                        break;

                case 6:
                        if( *x-1>=0 && *y-2>=0 && chess[*x-1][*y-2]==0 )
                        {
                                *x = *x - 1;
                                *y = *y - 2;
                                return 1;
                        }
                        break;

                case 7:
                        if( *x-1>=0 && *y+2<=Y-1 && chess[*x-1][*y+2]==0 )
                        {
                                *x = *x - 1;
                                *y = *y + 2;
                                return 1;
                        }
                        break;

                default:
                        break;
        }

        return 0;
}

void print()
{
        int i, j;

        for( i=0; i < X; i++ )
        {
                for( j=0; j < Y; j++ )
                {
                        printf("%2d\t", chess[i][j]);
                }
                printf("\n");
        }
        printf("\n");
}

// 深度优先遍历棋盘
// (x,y)为位置坐标
// tag是标记变量,每走一步,tag+1
int TravelChessBoard(int x, int y, int tag)
{
        int x1=x, y1=y, flag=0, count=0;
       
        chess[x][y] = tag;

        // 如果tag==X*Y,则完成整个棋盘的遍历
        if( tag == X*Y )
        {
                print();
                return 1;
        }

        flag = nextxy(&x1, &y1, count);
        while( 0==flag && count < 7 )
        {
                count++;
                flag = nextxy(&x1, &y1, count);
        }

        while( flag )
        {
                if( TravelChessBoard(x1, y1, tag+1) )
                {
                        return 1;
                }

                x1 = x;
                y1 = y;
                count++;

                flag = nextxy(&x1, &y1, count);
                while( 0==flag && count < 7 )
                {
                        count++;
                        flag = nextxy(&x1, &y1, count);
                }
        }

        if( 0 == flag )
        {
                chess[x][y] = 0;
        }

        return 0;
}

int main()
{
        int i, j;
        clock_t start, finish;

        start = clock();

        for( i=0; i < X; i++ )
        {
                for( j=0; j < Y; j++ )
                {
                        chess[i][j] = 0;
                }
        }

        if( !TravelChessBoard(2, 0, 1) )
        {
                printf("抱歉,马踏棋盘失败鸟~\n");
        }

        finish = clock();
        printf("\n本次计算一共耗时: %f秒\n\n", (double)(finish-start)/CLOCKS_PER_SEC);

        return 0;
}

第六十一讲 图的遍历|【广度优先遍历】

1.广度优先遍历

广度优先遍历(BreadthFirstSearch),又称为广度优先搜索,简称BFS。

如果以之前我们找钥匙的例子来讲:

        运用深度优先遍历意味着要先彻底查找完一个房间再开始另一个房间的搜索。

在这里插入图片描述
但我们知道,钥匙放在沙发地下等犄角旮旯的可能性极低,因此我们运用新的方案:

        先看看钥匙是否放在各个房间的显眼位置,如果没有,再看看各个房间的抽屉有没有。

在这里插入图片描述
这样逐步扩大查找的范围的方式我们称为广度优先遍历。

那么要实现对图的广度遍历,我们可以利用队列来实现:

在这里插入图片描述
代码实现:

// 邻接矩阵的广度遍历算法
void BFSTraverse(MGraph G)
{
        int i, j;
        Queue Q;
       
        for( i=0; i < G.numVertexes; i++ )
        {
                visited[i] = FALSE;
        }
       
        initQueue( &Q );
       
        for( i=0; i < G.numVertexes; i++ )
        {
                if( !visited[i] )
                {
                        printf("%c ", G.vex[i]);
                        visited[i] = TRUE;
                        EnQueue(&Q, i);
                       
                        while( !QueueEmpty(Q) )
                        {
                                DeQueue(&Q, &i);
                                for( j=0; j < G.numVertexes; j++ )
                                {
                                        if( G.art[i][j]==1 && !visited[j] )
                                        {
                                                printf("%c ", G.vex[j]);
                                                visited[j] = TRUE;
                                                EnQueue(&Q, j);
                                        }
                                }
                        }
                }
        }
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值