第二题{Positive definite matrices}
题目
A matrix A ∈ R n × n A \in {R}^{n×n} A∈Rn×n is positive semi-definite (PSD), denoted A ≥ 0 A \ge 0 A≥0, if A = A T A = {A}^{T} A=AT and x T A x ≥ 0 {x}^T Ax \ge 0 xTAx≥0 for all x ∈ R n x \in {R}^{n} x∈Rn. A matrix A A A is positive definite,denoted A > 0 A > 0 A>0,if A = A T A={A}^{T} A=AT and x T A x > 0 {x}^TAx>0 xTAx>0 for all x ≠ 0 x\ne 0 x̸=0, that is, all non-zero vectors x.The simplest example of a positive definite matrix is the identity I (the diagonal matrix with 1s on the diagonal and 0s elsewhere), which satisfies x T I x = ∥ x ∥ 2 2 = ∑ i = 1 n x i 2 {x}^TIx={\left\| x\right\|}_2^2 = \sum_{i=1}^{n}{{x}_{i}^2} xTIx=∥x∥22=∑i=1nxi2.
第一问
Let z ∈ R n z \in {R}^{n} z∈Rn be an n-vector. Show that A = z z T A = z{z}^T A=zzT is positive semi-definite.
解
首先: A T = ( z z T ) T = z z T = A A^T = (zz^T)^T = zz^T=A AT=(zzT)T=zzT=A
z z T = [ z 1 z 2 ⋮ z n ] [ z 1 z 2 ⋯ z n ] = [ z 1 z 1 z 1 z 2 ⋯ z 1 z n z 2 z 1 z 2 z 2 ⋯ z 2 z n ⋮ ⋮ ⋱ ⋮ z n z 1 z n z 2 ⋯ z n z n ] zz^T=\begin{bmatrix} z_1 \\ z_2 \\ \vdots \\ z_n \end{bmatrix} \begin{bmatrix} z_1 & z_2 & \cdots & z_n \end{bmatrix}=\begin{bmatrix} z_1z_1 & z_1z_2 & \cdots & z_1z_n \\ z_2z_1 & z_2z_2 & \cdots & z_2z_n \\ \vdots &\vdots &\ddots & \vdots \\ z_nz_1 & z_nz_2 & \cdots &z_nz_n\end{bmatrix} zzT=⎣⎢⎢⎢⎡z1z2⋮zn⎦⎥⎥⎥⎤[z1z2⋯zn]=⎣⎢⎢⎢⎡z1z1z2z1⋮znz1z1z2z2z2⋮znz2⋯⋯⋱⋯z1znz2zn⋮znzn⎦⎥⎥⎥⎤
∴ A i j = z i z j \therefore A_{ij} = z_iz_j ∴Aij=zizj
由第一题可知:
x
T
A
x
=
∑
i
=
1
n
∑
j
=
1
n
A
i
j
x
i
x
j
=
∑
i
=
1
n
∑
j
=
1
n
z
i
z
j
x
i
x
j
=
∑
i
=
1
n
z
i
x
i
∑
j
=
1
n
z
i
x
j
=
(
∑
i
=
1
n
z
i
x
i
)
2
≥
0
{x}^{T}Ax =\sum_{i=1}^{n}{\sum_{j=1}^{n}{{A}_{ij}{x}_{i}}{x}_{j}}=\sum_{i=1}^{n}{\sum_{j=1}^{n}{z_iz_j{x}_{i}}{x}_{j}}=\sum_{i=1}^{n}z_ix_i\sum_{j=1}^{n}z_ix_j={(\sum_{i=1}^{n}z_ix_i)}^2 \ge 0
xTAx=∑i=1n∑j=1nAijxixj=∑i=1n∑j=1nzizjxixj=∑i=1nzixi∑j=1nzixj=(∑i=1nzixi)2≥0 for
x
∈
R
n
x\in R^n
x∈Rn
所以:A is PSD。
第二问
Let z ∈ R n z \in R^n z∈Rn be a non-zero n-vector. Let A = z z T A = zz^T A=zzT . What is the null-space of A? What is the rank of A?
解
- 知识点 null-space
The nullspace of A consists of all solutions to A x = 0 Ax=0 Ax=0. These vectors x are in R n R^n Rn. The nullspace containing all solutions of A x = 0 Ax=0 Ax=0 is denoted by N ( A ) N(A) N(A).
因为:z为非0向量,所以: A x = 0 ⇒ z z T x = 0 ⇒ [ z 1 z 1 z 1 z 2 ⋯ z 1 z n z 2 z 1 z 2 z 2 ⋯ z 2 z n ⋮ ⋮ ⋱ ⋮ z n z 1 z n z 2 ⋯ z n z n ] x = 0 ⇒ [ z 1 z 1 z 1 z 2 ⋯ z 1 z n 0 0 ⋯ 0 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ 0 ] x = 0 ⇒ [ z 1 z 2 ⋯ z n 0 0 ⋯ 0 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ 0 ] x = 0 Ax=0 \Rightarrow zz^Tx=0 \Rightarrow \begin{bmatrix} z_1z_1 & z_1z_2 & \cdots & z_1z_n \\ z_2z_1 & z_2z_2 & \cdots & z_2z_n \\ \vdots &\vdots &\ddots & \vdots \\ z_nz_1 & z_nz_2 & \cdots &z_nz_n\end{bmatrix}x=0 \Rightarrow \begin{bmatrix} z_1z_1 & z_1z_2 & \cdots & z_1z_n \\ 0 & 0 & \cdots & 0 \\ \vdots &\vdots &\ddots & \vdots \\ 0 & 0 & \cdots &0 \end{bmatrix}x=0 \Rightarrow \begin{bmatrix} z_1 & z_2 & \cdots & z_n \\ 0 & 0 & \cdots & 0 \\ \vdots &\vdots &\ddots & \vdots \\ 0 & 0 & \cdots &0 \end{bmatrix}x=0 Ax=0⇒zzTx=0⇒⎣⎢⎢⎢⎡z1z1z2z1⋮znz1z1z2z2z2⋮znz2⋯⋯⋱⋯z1znz2zn⋮znzn⎦⎥⎥⎥⎤x=0⇒⎣⎢⎢⎢⎡z1z10⋮0z1z20⋮0⋯⋯⋱⋯z1zn0⋮0⎦⎥⎥⎥⎤x=0⇒⎣⎢⎢⎢⎡z10⋮0z20⋮0⋯⋯⋱⋯zn0⋮0⎦⎥⎥⎥⎤x=0
可得 r a n k ( A ) = 1 rank(A) = 1 rank(A)=1.
可知: x 1 x_1 x1为pivot variable,其他为free variables,所以 special solutions如下:
s 1 = [ − z 2 z 1 0 ⋮ 0 ] s_1 = \begin{bmatrix} -z_2 \\ z_1 \\ 0\\ \vdots \\ 0 \end{bmatrix} s1=⎣⎢⎢⎢⎢⎢⎡−z2z10⋮0⎦⎥⎥⎥⎥⎥⎤
s 2 = [ − z 3 0 z 1 ⋮ 0 ] s_2 = \begin{bmatrix} -z_3 \\ 0\\ z_1 \\ \vdots \\ 0 \end{bmatrix} s2=⎣⎢⎢⎢⎢⎢⎡−z30z1⋮0⎦⎥⎥⎥⎥⎥⎤
⋮ \vdots ⋮
s n − 2 = [ − z n − 1 0 0 ⋮ z 1 0 ] s_{n-2}= \begin{bmatrix} -z_{n-1} \\ 0 \\ 0\\ \vdots \\ z_1\\ 0 \end{bmatrix} sn−2=⎣⎢⎢⎢⎢⎢⎢⎢⎡−zn−100⋮z10⎦⎥⎥⎥⎥⎥⎥⎥⎤
s n − 1 = [ − z n 0 0 ⋮ 0 z 1 ] s_{n-1}= \begin{bmatrix} -z_n \\ 0 \\ 0\\ \vdots \\ 0 \\ z_1 \end{bmatrix} sn−1=⎣⎢⎢⎢⎢⎢⎢⎢⎡−zn00⋮0z1⎦⎥⎥⎥⎥⎥⎥⎥⎤
A的Null Space是 s 1 s_1 s1 s 2 s_2 s2到 s n − 1 s_{n-1} sn−1共n-1个special solutions的线性组合,即:
N ( A ) = c 1 s 1 + c 2 s 2 + ⋯ + c n − 1 s ( n − 1 ) = [ − ∑ i = 1 n − 1 c i z i + 1 c 1 z 1 ⋮ c n − 1 z 1 ] N(A)= c_1s_1 + c_2s_2 + \cdots + c_{n-1}s_(n-1)= \begin{bmatrix} -\sum_{i=1}^{n-1}c_iz_{i+1} \\ c_1z_1\\ \vdots \\c_{n-1} z_1 \end{bmatrix} N(A)=c1s1+c2s2+⋯+cn−1s(n−1)=⎣⎢⎢⎢⎡−∑i=1n−1cizi+1c1z1⋮cn−1z1⎦⎥⎥⎥⎤
第三问
Let A ∈ R n × n A \in R^{n\times n} A∈Rn×n be positive semidefinite and B ∈ R m × n B \in R^{m \times n} B∈Rm×n be arbitrary, where m , n ∈ N m, n \in N m,n∈N. Is B A B T BAB^T BABT PSD? If so, prove it. If not, give a counterexample with explicit A, B.
解
-
令 C = B A B T C=BAB^T C=BABT,则 C T = B A B T C^T = BAB^T CT=BABT, 且 C ∈ R m × m C \in R^{m \times m} C∈Rm×m.
-
令 x ∈ R m x \in R^m x∈Rm, x T C x = x T B A B T x = ( B T x ) T A ( B T x ) x^TCx = x^TBAB^Tx=(B^Tx)^TA(B^Tx) xTCx=xTBABTx=(BTx)TA(BTx) 设 y = B T x y = B^Tx y=BTx, y ∈ R n y \in R^n y∈Rn, 因为 A是PSD,所以: y T A y ≥ 0 y^TAy \ge 0 yTAy≥0。
综合1,2,可得 C为PSD,即: B A B T BAB^T BABT为PSD。