证明:无理数乘以非零的有理数仍然是无理数

题目:设 aaa 是无理数,bbb 是非零有理数,则 ababab 一定是无理数。

反正法

假设 ababab 是有理数,则 ab=cdab = \frac{c}{d}ab=dc 其中 cccddd 都是有理数。等式两边同除以 bbb,可得 a=cbda=\frac{c}{bd}a=bdc 由于 b,c,db,c,db,c,d 都是有理数,所以 aaa 也是有理数,与假设矛盾,所以ab是无理数。
证毕。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值