题目:设 aaa 是无理数,bbb 是非零有理数,则 ababab 一定是无理数。
反正法:
假设 ababab 是有理数,则 ab=cdab = \frac{c}{d}ab=dc 其中 ccc,ddd 都是有理数。等式两边同除以 bbb,可得 a=cbda=\frac{c}{bd}a=bdc 由于 b,c,db,c,db,c,d 都是有理数,所以 aaa 也是有理数,与假设矛盾,所以ab是无理数。
证毕。
题目:设 aaa 是无理数,bbb 是非零有理数,则 ababab 一定是无理数。
反正法:
假设 ababab 是有理数,则 ab=cdab = \frac{c}{d}ab=dc 其中 ccc,ddd 都是有理数。等式两边同除以 bbb,可得 a=cbda=\frac{c}{bd}a=bdc 由于 b,c,db,c,db,c,d 都是有理数,所以 aaa 也是有理数,与假设矛盾,所以ab是无理数。
证毕。