题目:设 a a a 是无理数, b b b 是非零有理数,则 a b ab ab 一定是无理数。
反正法:
假设
a
b
ab
ab 是有理数,则
a
b
=
c
d
ab = \frac{c}{d}
ab=dc 其中
c
c
c,
d
d
d 都是有理数。等式两边同除以
b
b
b,可得
a
=
c
b
d
a=\frac{c}{bd}
a=bdc 由于
b
,
c
,
d
b,c,d
b,c,d 都是有理数,所以
a
a
a 也是有理数,与假设矛盾,所以ab是无理数。
证毕。